Câu hỏi:

16/11/2025 5 Lưu

Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {10 - {x^2}} - 3}}{{1 - {x^2}}}\).

\(1\).

\(\frac{1}{6}\).

\(0\).

\( - \frac{1}{6}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {10 - {x^2}} - 3}}{{1 - {x^2}}}\)\[ = \mathop {\lim }\limits_{x \to 1} \frac{{1 - {x^2}}}{{\left( {1 - {x^2}} \right)\left( {\sqrt {10 - {x^2}} + 3} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt {10 - {x^2}} + 3}} = \frac{1}{6}\]. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cạnh của hình vuông thứ nhất là \(\frac{1}{2}\) nên diện tích \({S_1} = \frac{1}{4}\).

Cạnh hình vuông thứ hai là \(\frac{1}{4}\) nên diện tích \({S_2} = \frac{1}{{16}}\),…

Cứ tiếp tục như vậy thì ta có được \({S_1};\,{S_2};\,{S_3};...\) lập thành cấp số nhân lùi vô hạn có \({S_1} = \frac{1}{4}\), \(q = \frac{1}{4}\) nên ta có tổng diện tích chuột Mickey cần tô màu là \(S = {S_1} + {S_2} + {S_3} + ... = \frac{1}{4} \cdot \frac{1}{{1 - \frac{1}{4}}} = \frac{1}{3}\) (đvdt).

Lời giải

Ta có \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x}\).

Khi đó \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 55}}{x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 + \frac{{55}}{x}} \right) = 2\).

Trả lời: 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

\(S = 2\).

\(S = \frac{1}{2}\).

\(S = 3\).

\(S = \frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP