Một điểm dịch vụ trông giữ xe ô tô thu phí 30 nghìn đồng trong giờ đầu tiên và thu thêm 20 nghìn đồng cho mỗi giờ tiếp theo.
Hàm số mô tả số tiền phí theo thời gian trông giữ là \(f\left( x \right) = \left\{ \begin{array}{l}30\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;0 < x \le 1\\10 + 20x\;\;{\rm{khi}}\;x > 1\end{array} \right.\).
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 30\).
Một người gửi xe ô tô trong 2,5 giờ thì số tiền phải trả là 55 nghìn đồng.
Hàm số \(f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\).
Quảng cáo
Trả lời:
a) Hàm số mô tả số tiền phí theo thời gian trông giữ là \(f\left( x \right) = \left\{ \begin{array}{l}30\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;0 < x \le 1\\30 + 20\left( {x - 1} \right)\;\;{\rm{khi}}\;x > 1\end{array} \right.\) hay \(f\left( x \right) = \left\{ \begin{array}{l}30\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;0 < x \le 1\\10 + 20x\;\;{\rm{khi}}\;x > 1\end{array} \right.\).
b) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {10 + 20x} \right) = 30\).
c) Số tiền phải trả trong 2,5 giờ đầu là \(f\left( {2,5} \right) = 10 + 20 \cdot 2,5 = 60\) nghìn đồng.
d) Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {10 + 20x} \right) = 30 = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).
Do đó hàm số liên tục tại \(x = 1\).
Với \(x \in \left( {0;1} \right)\), \(f\left( x \right) = 30\) liên tục trên khoảng \(\left( {0;1} \right)\).
Với \(x \in \left( {1; + \infty } \right)\), \(f\left( x \right) = 10 + 20x\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).
Do đó hàm số \(f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(\mathop {\lim }\limits_{x \to 2} \frac{{a{x^2} + bx - 2}}{{x - 2}} = 5\) và \(\mathop {\lim }\limits_{x \to 2} \left( {x - 2} \right) = 0\) nên \(\mathop {\lim }\limits_{x \to 2} \left( {a{x^2} + bx - 2} \right) = 0\) hay \(4a + 2b - 2 = 0 \Leftrightarrow b = 1 - 2a\).
Khi đó \(\mathop {\lim }\limits_{x \to 2} \frac{{a{x^2} + bx - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{a{x^2} + \left( {1 - 2a} \right)x - 2}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {a{x^2} - 2ax} \right) + \left( {x - 2} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {ax + 1} \right)}}{{x - 2}}\)
\( = \mathop {\lim }\limits_{x \to 2} \left( {ax + 1} \right) = 2a + 1 = 5 \Rightarrow a = 2 \Rightarrow b = - 3\).
Vậy \(S = - 4\).
Trả lời: −4.
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{9 - {x^2}}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{ - \left( {x - 3} \right)\left( {x + 3} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x - 3} \right) = - 6\).
\(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to {3^ + }} \left( {1 - x} \right) = - 2\).
Suy ra \(a = - 6;b = - 2\). Vậy \({a^2} + {b^2} = 40\).
Trả lời: 40.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\lim {u_n} = 7\).
\(\lim \left( {{v_n} - \frac{1}{4}} \right) = 0\).
\(\lim \left( {2{u_n} - 4{v_n}} \right) = 0\).
\(\lim \frac{{{u_n}}}{{2{v_n}}} = \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
