Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) với \({u_n} = \frac{{2{n^2} - 4n + 7}}{{8{n^2} + 3n + 10}}\), \({v_n} = \frac{{\sqrt {4{n^2} + 5} }}{{8n}}\).
\(\lim {u_n} = 7\).
\(\lim \left( {{v_n} - \frac{1}{4}} \right) = 0\).
\(\lim \left( {2{u_n} - 4{v_n}} \right) = 0\).
\(\lim \frac{{{u_n}}}{{2{v_n}}} = \frac{1}{2}\).
Quảng cáo
Trả lời:
a) \(\lim {u_n} = \lim \frac{{2{n^2} - 4n + 7}}{{8{n^2} + 3n + 10}}\)\( = \lim \frac{{2 - \frac{4}{n} + \frac{7}{{{n^2}}}}}{{8 + \frac{3}{n} + \frac{{10}}{{{n^2}}}}} = \frac{1}{4}\).
b) \(\lim {v_n} = \lim \frac{{\sqrt {4{n^2} + 5} }}{{8n}} = \lim \frac{{\sqrt {4 + \frac{5}{{{n^2}}}} }}{8} = \frac{1}{4}\). Suy ra \(\lim \left( {{v_n} - \frac{1}{4}} \right) = 0\).
c) \(\lim \left( {2{u_n} - 4{v_n}} \right) = 2 \cdot \frac{1}{4} - 4 \cdot \frac{1}{4} = - \frac{1}{2}\).
d) \(\lim \frac{{{u_n}}}{{2{v_n}}} = \frac{1}{4}:\left( {2 \cdot \frac{1}{4}} \right) = \frac{1}{2}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có cạnh của hình vuông thứ nhất là \(\frac{1}{2}\) nên diện tích \({S_1} = \frac{1}{4}\).
Cạnh hình vuông thứ hai là \(\frac{1}{4}\) nên diện tích \({S_2} = \frac{1}{{16}}\),…
Cứ tiếp tục như vậy thì ta có được \({S_1};\,{S_2};\,{S_3};...\) lập thành cấp số nhân lùi vô hạn có \({S_1} = \frac{1}{4}\), \(q = \frac{1}{4}\) nên ta có tổng diện tích chuột Mickey cần tô màu là \(S = {S_1} + {S_2} + {S_3} + ... = \frac{1}{4} \cdot \frac{1}{{1 - \frac{1}{4}}} = \frac{1}{3}\) (đvdt).
Lời giải
Ta có \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x}\).
Khi đó \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 55}}{x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 + \frac{{55}}{x}} \right) = 2\).
Trả lời: 2.
Câu 3
\(S = 2\).
\(S = \frac{1}{2}\).
\(S = 3\).
\(S = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(3\).
\(7\).
\(1\).
\( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
