Cho hàm số \(f\left( x \right) = \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\).
\(f\left( x \right) = x,\forall x \in \mathbb{R}\).
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 2\).
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = - 3\).
Không tồn tại giới hạn của hàm số khi \(x \to 2\).
Quảng cáo
Trả lời:
a) \(f\left( x \right) = \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\)\( = \frac{{x\left( {x - 2} \right)}}{{\left| {x - 2} \right|}}\).
b) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x\left( {x - 2} \right)}}{{\left| {x - 2} \right|}}\)\( = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x\left( {x - 2} \right)}}{{\left( {x - 2} \right)}}\)\( = \mathop {\lim }\limits_{x \to {2^ + }} x = 2\).
c) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{x\left( {x - 2} \right)}}{{\left| {x - 2} \right|}}\)\( = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{x\left( {x - 2} \right)}}{{ - \left( {x - 2} \right)}}\)\( = \mathop {\lim }\limits_{x \to {2^ - }} \left( { - x} \right) = - 2\).
d) Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) nên không tồn tại giới hạn của hàm số khi \(x \to 2\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có cạnh của hình vuông thứ nhất là \(\frac{1}{2}\) nên diện tích \({S_1} = \frac{1}{4}\).
Cạnh hình vuông thứ hai là \(\frac{1}{4}\) nên diện tích \({S_2} = \frac{1}{{16}}\),…
Cứ tiếp tục như vậy thì ta có được \({S_1};\,{S_2};\,{S_3};...\) lập thành cấp số nhân lùi vô hạn có \({S_1} = \frac{1}{4}\), \(q = \frac{1}{4}\) nên ta có tổng diện tích chuột Mickey cần tô màu là \(S = {S_1} + {S_2} + {S_3} + ... = \frac{1}{4} \cdot \frac{1}{{1 - \frac{1}{4}}} = \frac{1}{3}\) (đvdt).
Lời giải
Ta có \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x}\).
Khi đó \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 55}}{x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 + \frac{{55}}{x}} \right) = 2\).
Trả lời: 2.
Câu 3
\(S = 2\).
\(S = \frac{1}{2}\).
\(S = 3\).
\(S = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(3\).
\(7\).
\(1\).
\( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
