Câu hỏi:

16/11/2025 11 Lưu

Để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{2{x^2} - 3x + 1}}{{2\left( {x - 1} \right)}}\;{\rm{khi}}\;x \ne 1\\m\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;x = 1\end{array} \right.\) liên tục tại \(x = 1\) thì giá trị \(m\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} - 3x + 1}}{{2\left( {x - 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {2x - 1} \right)}}{{2\left( {x - 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{2x - 1}}{2} = \frac{1}{2}\).

Để hàm số liên tục tại \(x = 1\) thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right) \Leftrightarrow m = 0,5\).

Trả lời: 0,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cạnh của hình vuông thứ nhất là \(\frac{1}{2}\) nên diện tích \({S_1} = \frac{1}{4}\).

Cạnh hình vuông thứ hai là \(\frac{1}{4}\) nên diện tích \({S_2} = \frac{1}{{16}}\),…

Cứ tiếp tục như vậy thì ta có được \({S_1};\,{S_2};\,{S_3};...\) lập thành cấp số nhân lùi vô hạn có \({S_1} = \frac{1}{4}\), \(q = \frac{1}{4}\) nên ta có tổng diện tích chuột Mickey cần tô màu là \(S = {S_1} + {S_2} + {S_3} + ... = \frac{1}{4} \cdot \frac{1}{{1 - \frac{1}{4}}} = \frac{1}{3}\) (đvdt).

Câu 2

\(S = 2\).

\(S = \frac{1}{2}\).

\(S = 3\).

\(S = \frac{1}{3}\).

Lời giải

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{2}\) nên

\(S = 1 + \frac{1}{2} + \frac{1}{4} + ... + {\left( {\frac{1}{2}} \right)^n} + ... = \frac{1}{{1 - \frac{1}{2}}} = 2\). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP