Câu hỏi:

16/11/2025 10 Lưu

Tìm giới hạn của các hàm số sau:

(a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + x - 2}}{{x + 2}}\);

(b) \[\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x - 3} - 2}}{{{x^2} - 49}}\];

(c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2\sqrt {5 - x} + \sqrt {7 - 3x} }}{{3{x^2} + 2x - 5}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + x - 2}}{{x + 2}}\)\( = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x + 2} \right)\left( {x - 1} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \left( {x - 1} \right) = - 3\).

b) \[\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x - 3} - 2}}{{{x^2} - 49}}\]\[ = \mathop {\lim }\limits_{x \to 7} \frac{{x - 7}}{{\left( {{x^2} - 49} \right)\left( {\sqrt {x - 3} + 2} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 7} \frac{1}{{\left( {x + 7} \right)\left( {\sqrt {x - 3} + 2} \right)}} = \frac{1}{{56}}\].

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2\sqrt {5 - x} + \sqrt {7 - 3x} }}{{3{x^2} + 2x - 5}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2 + 4 - 2\sqrt {5 - x} + \sqrt {7 - 3x} - 2}}{{3{x^2} + 2x - 5}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2}}{{3{x^2} + 2x - 5}} + \mathop {\lim }\limits_{x \to 1} \frac{{4 - 2\sqrt {5 - x} }}{{3{x^2} + 2x - 5}} + \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {7 - 3x} - 2}}{{3{x^2} + 2x - 5}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {3x + 5} \right)\left( {\sqrt {x + 3} + 2} \right)}} + 2\mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {3x + 5} \right)\left( {2 + \sqrt {5 - x} } \right)}} - 3\mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {3x + 5} \right)\left( {\sqrt {7 - 3x} + 2} \right)}} = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cạnh của hình vuông thứ nhất là \(\frac{1}{2}\) nên diện tích \({S_1} = \frac{1}{4}\).

Cạnh hình vuông thứ hai là \(\frac{1}{4}\) nên diện tích \({S_2} = \frac{1}{{16}}\),…

Cứ tiếp tục như vậy thì ta có được \({S_1};\,{S_2};\,{S_3};...\) lập thành cấp số nhân lùi vô hạn có \({S_1} = \frac{1}{4}\), \(q = \frac{1}{4}\) nên ta có tổng diện tích chuột Mickey cần tô màu là \(S = {S_1} + {S_2} + {S_3} + ... = \frac{1}{4} \cdot \frac{1}{{1 - \frac{1}{4}}} = \frac{1}{3}\) (đvdt).

Lời giải

Vì \(\mathop {\lim }\limits_{x \to 2} \frac{{a{x^2} + bx - 2}}{{x - 2}} = 5\) và \(\mathop {\lim }\limits_{x \to 2} \left( {x - 2} \right) = 0\) nên \(\mathop {\lim }\limits_{x \to 2} \left( {a{x^2} + bx - 2} \right) = 0\) hay \(4a + 2b - 2 = 0 \Leftrightarrow b = 1 - 2a\).

Khi đó \(\mathop {\lim }\limits_{x \to 2} \frac{{a{x^2} + bx - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{a{x^2} + \left( {1 - 2a} \right)x - 2}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {a{x^2} - 2ax} \right) + \left( {x - 2} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {ax + 1} \right)}}{{x - 2}}\)

\( = \mathop {\lim }\limits_{x \to 2} \left( {ax + 1} \right) = 2a + 1 = 5 \Rightarrow a = 2 \Rightarrow b = - 3\).

Vậy \(S = - 4\).

Trả lời: −4.

Câu 3

\(S = 2\).

\(S = \frac{1}{2}\).

\(S = 3\).

\(S = \frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP