Tìm giới hạn của các hàm số sau:
(a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + x - 2}}{{x + 2}}\);
(b) \[\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x - 3} - 2}}{{{x^2} - 49}}\];
(c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2\sqrt {5 - x} + \sqrt {7 - 3x} }}{{3{x^2} + 2x - 5}}.\)
Quảng cáo
Trả lời:
a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + x - 2}}{{x + 2}}\)\( = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x + 2} \right)\left( {x - 1} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \left( {x - 1} \right) = - 3\).
b) \[\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x - 3} - 2}}{{{x^2} - 49}}\]\[ = \mathop {\lim }\limits_{x \to 7} \frac{{x - 7}}{{\left( {{x^2} - 49} \right)\left( {\sqrt {x - 3} + 2} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 7} \frac{1}{{\left( {x + 7} \right)\left( {\sqrt {x - 3} + 2} \right)}} = \frac{1}{{56}}\].
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2\sqrt {5 - x} + \sqrt {7 - 3x} }}{{3{x^2} + 2x - 5}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2 + 4 - 2\sqrt {5 - x} + \sqrt {7 - 3x} - 2}}{{3{x^2} + 2x - 5}}\)
\( = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2}}{{3{x^2} + 2x - 5}} + \mathop {\lim }\limits_{x \to 1} \frac{{4 - 2\sqrt {5 - x} }}{{3{x^2} + 2x - 5}} + \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {7 - 3x} - 2}}{{3{x^2} + 2x - 5}}\)
\( = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {3x + 5} \right)\left( {\sqrt {x + 3} + 2} \right)}} + 2\mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {3x + 5} \right)\left( {2 + \sqrt {5 - x} } \right)}} - 3\mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {3x + 5} \right)\left( {\sqrt {7 - 3x} + 2} \right)}} = 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có cạnh của hình vuông thứ nhất là \(\frac{1}{2}\) nên diện tích \({S_1} = \frac{1}{4}\).
Cạnh hình vuông thứ hai là \(\frac{1}{4}\) nên diện tích \({S_2} = \frac{1}{{16}}\),…
Cứ tiếp tục như vậy thì ta có được \({S_1};\,{S_2};\,{S_3};...\) lập thành cấp số nhân lùi vô hạn có \({S_1} = \frac{1}{4}\), \(q = \frac{1}{4}\) nên ta có tổng diện tích chuột Mickey cần tô màu là \(S = {S_1} + {S_2} + {S_3} + ... = \frac{1}{4} \cdot \frac{1}{{1 - \frac{1}{4}}} = \frac{1}{3}\) (đvdt).
Lời giải
Vì \(\mathop {\lim }\limits_{x \to 2} \frac{{a{x^2} + bx - 2}}{{x - 2}} = 5\) và \(\mathop {\lim }\limits_{x \to 2} \left( {x - 2} \right) = 0\) nên \(\mathop {\lim }\limits_{x \to 2} \left( {a{x^2} + bx - 2} \right) = 0\) hay \(4a + 2b - 2 = 0 \Leftrightarrow b = 1 - 2a\).
Khi đó \(\mathop {\lim }\limits_{x \to 2} \frac{{a{x^2} + bx - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{a{x^2} + \left( {1 - 2a} \right)x - 2}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {a{x^2} - 2ax} \right) + \left( {x - 2} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {ax + 1} \right)}}{{x - 2}}\)
\( = \mathop {\lim }\limits_{x \to 2} \left( {ax + 1} \right) = 2a + 1 = 5 \Rightarrow a = 2 \Rightarrow b = - 3\).
Vậy \(S = - 4\).
Trả lời: −4.
Câu 3
\(S = 2\).
\(S = \frac{1}{2}\).
\(S = 3\).
\(S = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(3\).
\(7\).
\(1\).
\( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
