Câu hỏi:

17/11/2025 7 Lưu

Cho \(\Delta ABC.\) Lấy điểm \(D\) bất kì trên cạnh \(BC.\) Qua \(D\) kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(F.\) Qua \(D\) kẻ đường thẳng song song với \(AC\) cắt \(AB\) tại \(E.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Đúng.

Tứ giác \(AEDF\) có: \(AF\;{\rm{//}}\;ED,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEDF\) là hình bình hành.

b) Đúng.

\(\Delta ABC\) có: \(AC\;{\rm{//}}\;ED\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)

c) Đúng.

\(\Delta ABC\) có: \(AB\;{\rm{//}}\;DF\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{AC}} = \frac{{BD}}{{BC}}.\)

\(ED = AF\) (do tứ giác \(AEDF\) là hình bình hành) nên \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)

d) Sai.

tứ giác \(AEDF\) là hình bình hành nên \(AE = DF.\) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}\;\left( {cmt} \right)\) nên \(\frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}.\)

Do đó, \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = \frac{{CD}}{{BC}} + \frac{{BD}}{{BC}} = \frac{{CD + BD}}{{BC}} = \frac{{BC}}{{BC}} = 1.\) Vậy \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(3\)

Media VietJack

\(D\) là trung điểm của \(BC\) nên \(BD = \frac{1}{2}BC = \frac{1}{2} \cdot 18 = 9\;\left( {{\rm{cm}}} \right).\)

\(AD\) là trung tuyến của tam giác \(ABC\)\(G\) là trọng tâm của tam giác \(ABC\) nên \(\frac{{GD}}{{AD}} = \frac{1}{3}.\)

Tam giác \(ADB\)\(MG\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{MD}}{{BD}} = \frac{{GD}}{{AD}} = \frac{1}{3}.\)

Do đó, \(MD = \frac{1}{3}BD = \frac{1}{3} \cdot 9 = 3\;\left( {{\rm{cm}}} \right).\) Vậy \(MD = 3\;{\rm{cm}}.\)

Lời giải

Đáp án: \(6\)

Media VietJack

Qua \(D\) kẻ đường thẳng song song với \(KB\) cắt \(AC\) tại \(M.\)

\(\frac{{BD}}{{CD}} = 3\) nên \(\frac{{BD}}{{BC}} = \frac{3}{4}.\)\(AE = \frac{1}{3}AD\) nên \(\frac{{AE}}{{ED}} = \frac{1}{2}.\)

Tam giác \(AMD\)\(KE\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\) hay \(AK = \frac{1}{2}KM.\)

Tam giác \(CKB\)\(KB\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}} = \frac{3}{4}\) hay \(KM = \frac{3}{4}KC.\)

Do đó, \(AK = \frac{1}{2} \cdot \frac{3}{4}KC = \frac{3}{8}KC.\) Do đó, \(AK = \frac{3}{{11}}AC = \frac{3}{{11}} \cdot 22 = 6\;\left( {{\rm{cm}}} \right).\)

Vậy \(AK = 6\;{\rm{cm}}{\rm{.}}\)

Câu 4

A. \(\frac{{EC}}{{AE}} = \frac{1}{4}.\)      
B. \(\frac{{EC}}{{AE}} = \frac{1}{2}.\)           
C. \(\frac{{EC}}{{AE}} = \frac{2}{3}.\)      
D. \(\frac{{EC}}{{AE}} = \frac{1}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)                 
B. \(\frac{{AD}}{{AC}} = \frac{{AE}}{{AB}}.\)     
C. \(\frac{{AD}}{{AB}} = \frac{{AC}}{{AE}}.\)     
D. Cả A, B, C đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP