Câu hỏi:

17/11/2025 39 Lưu

Cho tam giác \(ABC\)\(AC = 10\;{\rm{cm}}\) và điểm \(M\) là trung điểm của \(BC.\) Lấy điểm \(E\) thuộc \(AM\) sao cho \(EM = \frac{1}{3}EA.\) Tia \(BE\) cắt \(AC\) tại \(N.\) Tính độ dài đoạn thẳng \(AN.\) (Đơn vị: \({\rm{cm}}\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(6\)

Media VietJack

Lấy điểm \(F\) trên tia \(AM\) sao cho \(M\) là trung điểm của \(EF.\)

Tứ giác \(ECFB\) có: \(M\) là giao điểm của \(EF,\;CB.\)\(M\) là trung điểm của \(EF,\) \(M\) là trung điểm của \(BC.\) Do đó, tứ giác \(ECFB\) là hình bình hành. Do đó, \(CF\;{\rm{//}}\;EB.\) Hay \(NE\;{\rm{//}}\;CF.\)

\(EM = \frac{1}{3}EA,\;EM = \frac{1}{2}EF\) nên \(\frac{1}{3}AE = \frac{1}{2}EF\) suy ra \(\frac{{AE}}{{EF}} = \frac{3}{2}.\)

Tam giác \(ACF\) có: \(NE\;{\rm{//}}\;CF\) nên theo định lí Thalès ta có: \(\frac{{AN}}{{NC}} = \frac{{AE}}{{EF}} = \frac{3}{2}.\)

Do đó, \(\frac{{AN}}{{AC}} = \frac{3}{5}.\) Vậy \(AN = \frac{3}{5} \cdot 10 = 6\;\left( {{\rm{cm}}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tứ giác \(AEDF\) là hình bình hành
Đúng
Sai
b) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
Đúng
Sai
c) \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
Đúng
Sai
d) \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 2.\)
Đúng
Sai

Lời giải

Media VietJack

a) Đúng.

Tứ giác \(AEDF\) có: \(AF\;{\rm{//}}\;ED,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEDF\) là hình bình hành.

b) Đúng.

\(\Delta ABC\) có: \(AC\;{\rm{//}}\;ED\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)

c) Đúng.

\(\Delta ABC\) có: \(AB\;{\rm{//}}\;DF\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{AC}} = \frac{{BD}}{{BC}}.\)

\(ED = AF\) (do tứ giác \(AEDF\) là hình bình hành) nên \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)

d) Sai.

tứ giác \(AEDF\) là hình bình hành nên \(AE = DF.\) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}\;\left( {cmt} \right)\) nên \(\frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}.\)

Do đó, \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = \frac{{CD}}{{BC}} + \frac{{BD}}{{BC}} = \frac{{CD + BD}}{{BC}} = \frac{{BC}}{{BC}} = 1.\) Vậy \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 1.\)

Lời giải

Đáp án: \(6\)

Media VietJack

Qua \(D\) kẻ đường thẳng song song với \(KB\) cắt \(AC\) tại \(M.\)

\(\frac{{BD}}{{CD}} = 3\) nên \(\frac{{BD}}{{BC}} = \frac{3}{4}.\)\(AE = \frac{1}{3}AD\) nên \(\frac{{AE}}{{ED}} = \frac{1}{2}.\)

Tam giác \(AMD\)\(KE\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\) hay \(AK = \frac{1}{2}KM.\)

Tam giác \(CKB\)\(KB\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}} = \frac{3}{4}\) hay \(KM = \frac{3}{4}KC.\)

Do đó, \(AK = \frac{1}{2} \cdot \frac{3}{4}KC = \frac{3}{8}KC.\) Do đó, \(AK = \frac{3}{{11}}AC = \frac{3}{{11}} \cdot 22 = 6\;\left( {{\rm{cm}}} \right).\)

Vậy \(AK = 6\;{\rm{cm}}{\rm{.}}\)

Câu 5

A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)                 
B. \(\frac{{AD}}{{AC}} = \frac{{AE}}{{AB}}.\)     
C. \(\frac{{AD}}{{AB}} = \frac{{AC}}{{AE}}.\)     
D. Cả A, B, C đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP