Một cây có chiều cao 14 m mọc phía sau một bức tường cao 8 m và cách bức tường một khoảng 12 m (như hình vẽ). Biết rằng, người quan sát có chiều cao \(1,8\) m.

Khi đó:
Quảng cáo
Trả lời:
a) Đúng.
Vì \(CB \bot AF,\,\,ED \bot AF,\,\,GF \bot \,AF\) nên \(CB\parallel ED\parallel GF\).
b) Đúng.
Xét \(\Delta AFG\) có \(ED\parallel GF\) nên \(\frac{{AD}}{{AF}} = \frac{{ED}}{{GF}}\) (hệ quả của định lí Thales)
Suy ra \(\frac{{AD}}{{12}} = \frac{8}{6}\) suy ra \(AD = \frac{{12 \cdot 8}}{6} = 16\,\,\left( {\rm{m}} \right)\,\).
c) Sai.
Xét \(\Delta ADE\) có \(CB\parallel ED\) nên: \(\frac{{AB}}{{AD}} = \frac{{CB}}{{ED}}\) (hệ quả của định lí Thalès)
d) Đúng.
Vì \(\frac{{AB}}{{AD}} = \frac{{CB}}{{ED}}\) nên \(\frac{{AB}}{{16}} = \frac{{1,8}}{8}\) suy ra \(AB = 3,6\,\,\left( {\rm{m}} \right)\).
Do đó, \(BD = AD - AB = 16 - 3,6 = 12,4\,\,\left( {\rm{m}} \right)\).
Vậy người quan sát có chiều cao \(1,8\,\,{\rm{m}}\) phải đứng cách bức tường \(12,4\,\,{\rm{m}}\) để có thể nhìn thấy ngọn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Có \(BC \bot AB',\,B'C' \bot AB'\) nên \(BC\parallel B'C'\).
Do đó, \(\frac{{AB}}{{AB'}} = \frac{{BC}}{{B'C'}}\) (Hệ quả của định lí Thalès)
Suy ra \(\frac{{AB}}{{AB + BB'}} = \frac{{BC}}{{B'C'}}\) hay \(\frac{x}{{x + 20}} = \frac{{30}}{{40}}\)
Suy ra \(40x = 30\left( {x + 20} \right)\) nên \(x = 60\,\,\left( {\rm{m}} \right)\).
Lời giải

a) Đúng.
Áp dụng định lí Thalès vào tam giác \(ABC\) có \(MN\parallel BC\) ta được: \(\frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\) suy ra \(\frac{{MN}}{{BC}} = \frac{1}{3}\).
b) Sai.
Áp dụng định lí Thalès vào tam giác \(ABC\) có \(EF\parallel BC\) ta được: \(\frac{{EF}}{{BC}} = \frac{{AF}}{{AC}}\) suy ra \(\frac{{EF}}{{BC}} = \frac{2}{3}\).
c) Đúng.
Xét tứ giác \(MNFE\) có \(MN\parallel BC\) và \(KI \bot MN\). Do đó \(MNFE\) là hình thang có hai đáy \(MN,FE\) và chiều cao \(KI.\)
d) Đúng.
Ta có: \({S_{MNEF}} = \frac{{\left( {MN + FE} \right) \cdot KI}}{2} = \frac{{\left( {\frac{1}{3}BC + \frac{2}{3}BC} \right) \cdot \frac{1}{3}AH}}{2} = \frac{1}{3}{S_{ABC}} = 30{\rm{ c}}{{\rm{m}}^2}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



