Cho tam giác có độ dài ba cạnh lần lượt là \(a\), \(b\), \(c\), các góc đối diện các cạnh đó lần lượt là \(\alpha \), \(\beta \), \(\varphi \). Khẳng định nào sau đây là đúng ?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Theo định lí sin trong tam giác ta có: \(\frac{a}{{\sin \alpha }} = \frac{b}{{\sin \beta }} = \frac{c}{{\sin \varphi }}\), do đó đáp án A đúng.
Theo định lí côsin trong tam giác ta có: \(\left\{ \begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc \cdot \cos \alpha \\{b^2} = {a^2} + {c^2} - 2ac \cdot \cos \beta \\{c^2} = {b^2} + {a^2} - 2ba \cdot \cos \varphi \end{array} \right.\), do đó các đáp án B, C, D đều sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Mệnh đề “\(\exists x \in \mathbb{Z},x\,\, \vdots \,\,5\)” được diễn tả bằng lời như sau:
Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5.
Câu 2
Lời giải
Đáp án đúng là: A
Xét tam giác \(ABC\) cân tại \(C\) cạnh \(AC = 5\,\,{\rm{cm}}\), \(\widehat {ACB} = 45^\circ \).
Do đó,\(BC = AC = 5\,\,\,{\rm{cm}} \Rightarrow \left| {\overrightarrow {CB} } \right| = \left| {\overrightarrow {CA} } \right| = 5\,\,{\rm{cm}}\).
Ta có: \(\left( {\overrightarrow {CB} ,\overrightarrow {CA} } \right) = \widehat {ACB} = 45^\circ \Rightarrow \cos \left( {\overrightarrow {CB} ,\overrightarrow {CA} } \right) = \cos 45^\circ = \frac{{\sqrt 2 }}{2}\).
Vậy \(\overrightarrow {CA} \cdot \overrightarrow {CB} = \left| {\overrightarrow {CA} } \right| \cdot \left| {\overrightarrow {CB} } \right| \cdot \cos \left( {\overrightarrow {CA} ,\overrightarrow {CB} } \right) = 5 \cdot 5 \cdot \frac{{\sqrt 2 }}{2} = \frac{{25\sqrt 2 }}{2}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
