Câu hỏi:

17/11/2025 13 Lưu

Cho \(\Delta ABC\)\(AE\;\left( {E \in BC} \right)\) là đường phân giác của tam giác. Gọi \(I\) là điểm nằm trên cạnh \(AB\) sao cho \(\frac{{AI}}{{BI}} = \frac{{AC}}{{BC}}.\) Gọi \(D\) là giao điểm của \(AE\)\(CI.\) Khi đó:

A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)   
B. \(\widehat {ABD} = \frac{4}{5}\widehat {DBC}.\)
C. \(\widehat {ABD} = \frac{3}{4}\widehat {DBC}.\)    
D. \(\widehat {ABD} = \widehat {DBC}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Media VietJack

\(\Delta ABC\)\(\frac{{AI}}{{BI}} = \frac{{AC}}{{BC}}\) nên \(CI\) là tia phân giác của \(\widehat {ACB}.\)

\(D\) là giao điểm của hai đường phân giác \(AE\)\(CI\) của \(\Delta ABC\) nên \(BD\) là đường phân giác của \(\widehat {ABC}\) trong \(\Delta ABC.\) Do đó, \(\widehat {ABD} = \widehat {DBC}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{2}{3}.\)       
B. \(\frac{3}{4}.\)     
C. \(\frac{3}{5}.\)      
D. \(\frac{4}{5}.\)

Lời giải

Đáp án đúng là: D

Media VietJack

\(ABCD\) là hình bình hành nên \(BC = AD = 10\;{\rm{cm}},\;AB = DC = 8\;{\rm{cm}}.\)

\(BE\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{EC}}{{AE}} = \frac{{BC}}{{BA}} = \frac{{10}}{8} = \frac{4}{5}.\) Vậy \(\frac{{EC}}{{AE}} = \frac{4}{5}.\)

Câu 2

A. \(\widehat {DAC} = 60^\circ .\)    
B. \(\widehat {DAC} = 40^\circ .\)    
C. \(\widehat {DAC} = 50^\circ .\)    
D. \(\widehat {DAC} = 45^\circ .\)

Lời giải

Đáp án đúng là: D

Media VietJack

\(\Delta ABC\) có: \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}\left( { = \frac{2}{3}} \right)\) nên \(AD\) là tia phân giác của \(\widehat {BAC}\) trong \(\Delta ABC.\)

Do đó, \(\widehat {DAC} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\) Vậy \(\widehat {DAC} = 45^\circ .\)

Câu 3

A. \(AE\) là đường phân giác của \(\Delta ABC.\)    
B. \(AE\) là đường trung trực của \(\Delta ABC.\)          
C. \(AE\) là đường cao của \(\Delta ABC.\)   
D. \(AE\) là đường trung tuyến của \(\Delta ABC.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP