Cho hình lăng trụ tam giác \(ABC.A'B'C'.\)

Hình chiếu của tam giác \(ACB\) trên mặt phẳng \(\left( {A'B'C'} \right)\) theo phương \(CC'\) là
Tam giác \(A'C'B'.\)
Đoạn thẳng \(A'B'.\)
Tam giác \(A'B'C'.\)
Đoạn thẳng \(A'C'.\)
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì \(ABC.A'B'C'\) là hình lăng trụ nên \(AA'{\rm{//}}BB'{\rm{//}}CC'.\)
Mà ba điểm \(A',\,B',\,C'\) đều thuộc \(\left( {A'B'C'} \right)\) nên \(A',\,B',\,C'\) lần lượt là hình chiếu của \(A,\,B,\,C\) trên \(\left( {A'B'C'} \right).\)
Suy ra hình chiếu của tam giác \(ACB\) trên trên mặt phẳng \(\left( {A'B'C'} \right)\) theo phương \(CC'\) là tam giác \(A'C'B'.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác \(SAB\) có \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) nên \(MN\) là đường trung bình. Suy ra \[MN{\rm{//}}AB\] (Tính chất đường trung bình).
Lại có \(AB{\rm{//}}CD\) (do \(ABCD\) là hình bình hành) nên \(MN{\rm{//}}CD,\) mà \(CD \subset \left( {SCD} \right)\).
Do đó, \(MN{\rm{//}}\left( {SCD} \right).\)
b) Vì \(P\) là trọng tâm của tam giác \(BCD\) nên \(P \in \left( {ABCD} \right)\).
Khi đó, hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) có điểm \(P\) chung.
Lại có \(MN \subset \left( {MNP} \right);AB \subset \left( {ABCD} \right);MN\,{\rm{//}}\,AB\).
Do đó, giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng qua \(P\) và song song với \(MN,\,\,AB\).
Trong mặt phẳng \(\left( {ABCD} \right)\), qua điểm \(P\) kẻ \(EF{\rm{//}}AB\,\left( {E \in AD;F \in BC} \right),\) khi đó ta có \(\left( {MNP} \right) \cap \left( {ABCD} \right) = EF.\)
Câu 3
\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)
\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)
\(MN{\rm{//}}\left( {ABCD} \right).\)
\(MP{\rm{//}}\left( {ABCD} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Đường thẳng \(AB.\)
Đường thẳng \(AD.\)
Đường thẳng \[AC.\]
Đường thẳng \(SA.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(a = 2.\)
\(a = 0.\)
\(a = - 2.\)
\(a = 1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
1.
\( + \infty .\)
\( - \infty .\)
0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
