Câu hỏi:

17/11/2025 344 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) và \(P\) là trọng tâm của tam giác \(BCD\).

(a) Chứng minh đường thẳng \(MN\) song song với mặt phẳng \(\left( {SCD} \right).\)

(b) Tìm giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình bình hành. Gọi  M , N  lần lượt là trung điểm của  S A , S B  và  P  là trọng tâm của tam giác  B C D .  (a) Chứng minh đường thẳng  M N  song song với mặt phẳng  ( S C D ) . (ảnh 1)

a) Xét tam giác \(SAB\) có \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) nên \(MN\) là đường trung bình. Suy ra \[MN{\rm{//}}AB\] (Tính chất đường trung bình).

Lại có \(AB{\rm{//}}CD\) (do \(ABCD\) là hình bình hành) nên \(MN{\rm{//}}CD,\) mà \(CD \subset \left( {SCD} \right)\).

Do đó, \(MN{\rm{//}}\left( {SCD} \right).\)

b) Vì \(P\) là trọng tâm của tam giác \(BCD\) nên \(P \in \left( {ABCD} \right)\).

Khi đó, hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) có điểm \(P\) chung.

Lại có \(MN \subset \left( {MNP} \right);AB \subset \left( {ABCD} \right);MN\,{\rm{//}}\,AB\).

Do đó, giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng qua \(P\) và song song với \(MN,\,\,AB\).

Trong mặt phẳng \(\left( {ABCD} \right)\), qua điểm \(P\) kẻ \(EF{\rm{//}}AB\,\left( {E \in AD;F \in BC} \right),\) khi đó ta có \(\left( {MNP} \right) \cap \left( {ABCD} \right) = EF.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho tứ diện  A B C D .  Trên các cạnh  A B  và  A C  lấy hai điểm  M  và  N  sao cho  A M = B M  và  A N = 2 N C .  Giao tuyến của hai mặt phẳng  ( D M N )  và  ( A C D )  là đường thẳng nào dưới đây? (ảnh 1)

Ta có: \(N \in AC\) mà \(AC \subset \left( {ACD} \right) \Rightarrow N \in \left( {ACD} \right).\)

\( \Rightarrow N \in \left( {DMN} \right) \cap \left( {ACD} \right).\)

Lại có: \(D \in \left( {DMN} \right) \cap \left( {ACD} \right).\)

Do đó \(DN = \left( {DMN} \right) \cap \left( {ACD} \right).\)

Câu 2

Mặt phẳng \(\left( {ABD} \right).\)

Mặt phẳng \(\left( {ACD} \right).\)

Mặt phẳng \[\left( {ABC} \right).\]

Mặt phẳng \(\left( {BCD} \right).\)

Lời giải

Đáp án đúng là: D

Cho tứ diện  A B C D .  Gọi  M , N  lần lượt là trung điểm của  A B , A C .  Đường thẳng  M N  song song với mặt phẳng nào sau đây? (ảnh 1)

Xét \(\Delta ABC\) có: \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AC.\)

Suy ra \(MN\) là đường trung bình của \(\Delta ABC.\)

\( \Rightarrow MN{\rm{//}}BC.\)

Mà \(BC \subset \left( {BCD} \right);\,\,MN \not\subset \left( {BCD} \right).\)

\( \Rightarrow MN{\rm{//}}\left( {BCD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)

\(MN{\rm{//}}\left( {ABCD} \right).\)

\(MP{\rm{//}}\left( {ABCD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(50^\circ + k360^\circ ,\,\,k \in \mathbb{Z}.\)

\(50^\circ + k180^\circ ,\,\,k \in \mathbb{Z}.\)

\( - 50^\circ + k360^\circ ,\,\,k \in \mathbb{Z}.\)

\( - 50^\circ + k180^\circ ,\,\,k \in \mathbb{Z}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP