Câu hỏi:

17/11/2025 140 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) và \(P\) là trọng tâm của tam giác \(BCD\).

(a) Chứng minh đường thẳng \(MN\) song song với mặt phẳng \(\left( {SCD} \right).\)

(b) Tìm giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình bình hành. Gọi  M , N  lần lượt là trung điểm của  S A , S B  và  P  là trọng tâm của tam giác  B C D .  (a) Chứng minh đường thẳng  M N  song song với mặt phẳng  ( S C D ) . (ảnh 1)

a) Xét tam giác \(SAB\) có \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) nên \(MN\) là đường trung bình. Suy ra \[MN{\rm{//}}AB\] (Tính chất đường trung bình).

Lại có \(AB{\rm{//}}CD\) (do \(ABCD\) là hình bình hành) nên \(MN{\rm{//}}CD,\) mà \(CD \subset \left( {SCD} \right)\).

Do đó, \(MN{\rm{//}}\left( {SCD} \right).\)

b) Vì \(P\) là trọng tâm của tam giác \(BCD\) nên \(P \in \left( {ABCD} \right)\).

Khi đó, hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) có điểm \(P\) chung.

Lại có \(MN \subset \left( {MNP} \right);AB \subset \left( {ABCD} \right);MN\,{\rm{//}}\,AB\).

Do đó, giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng qua \(P\) và song song với \(MN,\,\,AB\).

Trong mặt phẳng \(\left( {ABCD} \right)\), qua điểm \(P\) kẻ \(EF{\rm{//}}AB\,\left( {E \in AD;F \in BC} \right),\) khi đó ta có \(\left( {MNP} \right) \cap \left( {ABCD} \right) = EF.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho tứ diện  A B C D .  Trên các cạnh  A B  và  A C  lấy hai điểm  M  và  N  sao cho  A M = B M  và  A N = 2 N C .  Giao tuyến của hai mặt phẳng  ( D M N )  và  ( A C D )  là đường thẳng nào dưới đây? (ảnh 1)

Ta có: \(N \in AC\) mà \(AC \subset \left( {ACD} \right) \Rightarrow N \in \left( {ACD} \right).\)

\( \Rightarrow N \in \left( {DMN} \right) \cap \left( {ACD} \right).\)

Lại có: \(D \in \left( {DMN} \right) \cap \left( {ACD} \right).\)

Do đó \(DN = \left( {DMN} \right) \cap \left( {ACD} \right).\)

Câu 2

\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)

\(MN{\rm{//}}\left( {ABCD} \right).\)

\(MP{\rm{//}}\left( {ABCD} \right).\)

Lời giải

Đáp án đúng là: B

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình bình hành tâm  O .  Gọi  M , N , P  theo thứ tự lần lượt là trung điểm của  S A , S B , S D .  Khẳng định nào sau đây sai? (ảnh 1)

Ta có: \(P\) là trung điểm của \(SD.\)

\( \Rightarrow P \in SD\) mà \(SD \subset \left( {SCD} \right).\)

\( \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right).\)

Vậy hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {SCD} \right)\) không song song với nhau.

Câu 3

Mặt phẳng \(\left( {ABD} \right).\)

Mặt phẳng \(\left( {ACD} \right).\)

Mặt phẳng \[\left( {ABC} \right).\]

Mặt phẳng \(\left( {BCD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP