Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) và \(P\) là trọng tâm của tam giác \(BCD\).
(a) Chứng minh đường thẳng \(MN\) song song với mặt phẳng \(\left( {SCD} \right).\)
(b) Tìm giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:

a) Xét tam giác \(SAB\) có \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) nên \(MN\) là đường trung bình. Suy ra \[MN{\rm{//}}AB\] (Tính chất đường trung bình).
Lại có \(AB{\rm{//}}CD\) (do \(ABCD\) là hình bình hành) nên \(MN{\rm{//}}CD,\) mà \(CD \subset \left( {SCD} \right)\).
Do đó, \(MN{\rm{//}}\left( {SCD} \right).\)
b) Vì \(P\) là trọng tâm của tam giác \(BCD\) nên \(P \in \left( {ABCD} \right)\).
Khi đó, hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) có điểm \(P\) chung.
Lại có \(MN \subset \left( {MNP} \right);AB \subset \left( {ABCD} \right);MN\,{\rm{//}}\,AB\).
Do đó, giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng qua \(P\) và song song với \(MN,\,\,AB\).
Trong mặt phẳng \(\left( {ABCD} \right)\), qua điểm \(P\) kẻ \(EF{\rm{//}}AB\,\left( {E \in AD;F \in BC} \right),\) khi đó ta có \(\left( {MNP} \right) \cap \left( {ABCD} \right) = EF.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B

Ta có: \(N \in AC\) mà \(AC \subset \left( {ACD} \right) \Rightarrow N \in \left( {ACD} \right).\)
\( \Rightarrow N \in \left( {DMN} \right) \cap \left( {ACD} \right).\)
Lại có: \(D \in \left( {DMN} \right) \cap \left( {ACD} \right).\)
Do đó \(DN = \left( {DMN} \right) \cap \left( {ACD} \right).\)
Câu 2
Mặt phẳng \(\left( {ABD} \right).\)
Mặt phẳng \(\left( {ACD} \right).\)
Mặt phẳng \[\left( {ABC} \right).\]
Mặt phẳng \(\left( {BCD} \right).\)
Lời giải
Đáp án đúng là: D

Xét \(\Delta ABC\) có: \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AC.\)
Suy ra \(MN\) là đường trung bình của \(\Delta ABC.\)
\( \Rightarrow MN{\rm{//}}BC.\)
Mà \(BC \subset \left( {BCD} \right);\,\,MN \not\subset \left( {BCD} \right).\)
\( \Rightarrow MN{\rm{//}}\left( {BCD} \right).\)
Câu 3
Tam giác \(A'C'B'.\)
Đoạn thẳng \(A'B'.\)
Tam giác \(A'B'C'.\)
Đoạn thẳng \(A'C'.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)
\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)
\(MN{\rm{//}}\left( {ABCD} \right).\)
\(MP{\rm{//}}\left( {ABCD} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(50^\circ + k360^\circ ,\,\,k \in \mathbb{Z}.\)
\(50^\circ + k180^\circ ,\,\,k \in \mathbb{Z}.\)
\( - 50^\circ + k360^\circ ,\,\,k \in \mathbb{Z}.\)
\( - 50^\circ + k180^\circ ,\,\,k \in \mathbb{Z}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

