Cho hai hình bình hành \(ABCD\) và \(ABEF\) có cạnh chung \(AB\) và không đồng phẳng. Gọi \(I,\,\,J,\,\,K\) lần lượt là trung điểm của \(AB,\,\,CD,\,\,EF.\) Khẳng đinh nào sau đây đúng?
\[\left( {BCE} \right){\rm{//}}\left( {DIK} \right).\]
\[\left( {ADF} \right){\rm{//}}\left( {BCE} \right).\]
\(\left( {BCE} \right){\rm{//}}\left( {BEJ} \right).\)
\[\left( {ADF} \right){\rm{//}}\left( {BEJ} \right).\]
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B

Do \(ABEF\) là hình bình hành nên \(AF{\rm{//}}BE.\)
Mà \(BE \subset \left( {BCE} \right);\,\,AF \not\subset \left( {BCE} \right) \Rightarrow AF{\rm{//}}\left( {BCE} \right).\)
Do \(ABCD\) là hình bình hành nên \(AD{\rm{//}}BC.\)
Mà \(BC \subset \left( {BCE} \right);\,\,AD \not\subset \left( {BCE} \right) \Rightarrow AD{\rm{//}}\left( {BCE} \right).\)
Ta có: \(AF{\rm{//}}\left( {BCE} \right);\,\,AD{\rm{//}}\left( {BCE} \right)\) và \(AF \cap AD = A\) trong \(\left( {ADF} \right).\)
Suy ra \[\left( {ADF} \right){\rm{//}}\left( {BCE} \right).\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)
Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)
Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)
\( \Rightarrow OM//SD.\)
Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)
\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)
b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)
\[ \Rightarrow K \in AN;\,\,K \in CD.\]
Mà \(AN \subset \left( {AMN} \right)\) và \(CD \subset \left( {SCD} \right).\)
\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)
Vì \(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]
\( \Rightarrow H \in MN;\,\,H \in SC.\)
Mà \(MN \subset \left( {AMN} \right)\) và \(SC \subset \left( {SCD} \right).\)
\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)
Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)
Câu 2
Điểm \(A'.\)
Điểm \(C'.\)
Điểm \(B'.\)
Điểm \(I'.\)
Lời giải
Đáp án đúng là: C

Vì \(ABC.A'B'C'\) hình lăng trụ nên \(AB = A'B'\) và \(AB{\rm{//}}A'B'.\)
Mà \(I,\,\,I'\) lần lượt là trung điểm của \(AB,\,\,A'B'.\)
\( \Rightarrow \left\{ \begin{array}{l}AI{\rm{//}}B'I'\\AI = B'I'\end{array} \right.\) nên \(AIB'I'\) là hình bình hành.
\( \Rightarrow AI'{\rm{//}}IB'\) và \(AI' = IB'.\)
Do đó, qua phép chiếu song song phương \(AI',\) mặt phẳng chiếu \(\left( {A'B'C'} \right)\) biến điểm \(I\) thành điểm \(B'.\)
Câu 3
Đường thẳng \(BG\) (\(G\) là trọng tâm tam giác\[ACD\]).
Đường thẳng \(AH\) (\(H\) là trực tâm tam giác \[ACD\]).
Đường thẳng \(MN.\)
Đường thẳng \(AM.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\frac{\pi }{2}.\)
\(\frac{\pi }{7}.\)
\(\frac{{2\pi }}{7}.\)
\(\frac{{4\pi }}{7}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\[DI\] cắt \(\left( {SBC} \right).\)
\(CD{\rm{//}}\left( {SAB} \right).\)
\[AD\] cắt \(\left( {SBC} \right).\)
\[AB{\rm{//}}\left( {SCD} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.