Cho tam giác \(ABC\) đồng dạng với tam giác \(A'B'C'.\) Phát biểu nào sau đây là sai?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì \(\Delta ABC \sim \Delta A'B'C'\) nên \(\Delta A'B'C' \sim \Delta ABC,\) do đó \[\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}};\,\,\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}}\] và \(\widehat {B\,} = \widehat {B'\,};\,\,\widehat {A\,} = \widehat {A'}.\)
Vậy phương án A là khẳng định sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 200
Xét \(\Delta OAB\) có \(AB\parallel A'B'\) (gt) nên: \(\frac{{OB'}}{{OB}} = \frac{{A'B'}}{{AB}}\) (hệ quả định lí Thalès).
Suy ra \(\frac{5}{{OB}} = \frac{3}{{120}}\) nên \(OB = \frac{{120 \cdot 5}}{3} = 200{\rm{ }}\left( {\rm{m}} \right)\).
Vậy vật \(AB\) được đặt cách vật kính máy ảnh là 200 m.
Lời giải
Đáp án đúng là: C
Nhận thấy, \(MN\) là đường trung bình của tam giác \(ABC\).
Do đó, \(MN = \frac{1}{2}BC = \frac{1}{2} \cdot 15 = 7,5{\rm{ }}\left( {{\rm{cm}}} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




