Cho \(\Delta ABC\) có \(H\) là trung điểm của \(BC\), \(K\) là trung điểm của \(AB\) thì khẳng định nào sau đây là sai?
Quảng cáo
Trả lời:
Đáp án đúng là: C

Theo đề, \(\Delta ABC\) có \(H\) là trung điểm của \(BC\), \(K\) là trung điểm của \(AB\) thì đường trung bình của \(\Delta ABC\) là \(HK.\)
Do đó, \(HK\parallel AC\) và \(HK = \frac{1}{2}AC\) hay \(AC = 2KH.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng.
Xét \(\Delta ADH\) và \(\Delta AHB\) có: \(\widehat {HDA} = \widehat {BHA} = 90^\circ \) và \(\widehat {DAH} = \widehat {BAH}\) (góc chung)
Suy ra \(\Delta ADH \sim \Delta AHB\) (g.g).
b) Đúng.
Suy ra \(\frac{{AD}}{{AH}} = \frac{{AH}}{{AB}}\) hay \(A{H^2} = AD.AB\) (1)
c) Sai.
Xét \(\Delta AEH\) và \(\Delta AHC\) có: \(\widehat {HEA} = \widehat {CHA} = 90^\circ \) và \(\widehat {EAH} = \widehat {CAH}\) (góc chung)
Suy ra \(\Delta AEH \sim \Delta AHC\) (g.g).
Suy ra \(\frac{{AE}}{{AH}} = \frac{{AH}}{{AC}}\) hay \(A{H^2} = AE.AC\) (2)
Từ (1) và (2) suy ra \(AD.AB = AE.AC\) hay \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\).
Xét \(\Delta ADE\) và \(\Delta ACB\) có: \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\) và \(\widehat {BAC} = \widehat {DAE}\) (góc chung)
Suy ra \(\Delta ADE \sim \Delta ACB\)(c.g.c)
d) Đúng.
Ta có \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{{8.5}}{2} = 20{\rm{ c}}{{\rm{m}}^2}\).
Mà \(\frac{{{S_{ADE}}}}{{{S_{ABC}}}} = \frac{{D{E^2}}}{{B{C^2}}} = \frac{{{4^2}}}{{{8^2}}} = \frac{1}{4}\).
Do đó, \({S_{ADE}} = \frac{1}{4}{S_{ABC}} = \frac{1}{4}.20 = 5{\rm{ c}}{{\rm{m}}^2}\).
Lời giải

a) Đúng.
Áp dụng định lí Thalès vào tam giác \(ABC\) có \(MN\parallel BC\) ta được: \(\frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\) suy ra \(\frac{{MN}}{{BC}} = \frac{1}{3}\).
b) Sai.
Áp dụng định lí Thalès vào tam giác \(ABC\) có \(EF\parallel BC\) ta được: \(\frac{{EF}}{{BC}} = \frac{{AF}}{{AC}}\) suy ra \(\frac{{EF}}{{BC}} = \frac{2}{3}\).
c) Đúng.
Xét tứ giác \(MNFE\) có \(MN\parallel BC\) và \(KI \bot MN\). Do đó \(MNFE\) là hình thang có hai đáy \(MN,FE\) và chiều cao \(KI.\)
d) Đúng.
Ta có: \({S_{MNEF}} = \frac{{\left( {MN + FE} \right) \cdot KI}}{2} = \frac{{\left( {\frac{1}{3}BC + \frac{2}{3}BC} \right) \cdot \frac{1}{3}AH}}{2} = \frac{1}{3}{S_{ABC}} = 30{\rm{ c}}{{\rm{m}}^2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



