Câu hỏi:

18/11/2025 43 Lưu

Cho tam giác \(ABC\) nhọn có đường cao \(AH\). Trên \(AH\) lấy các điểm \(K,I\) sao cho \(AK = KI = IH.\) Qua \(K,I\) lần lượt vẽ các đường thẳng \(MN\parallel BC,{\rm{ }}EF\parallel BC\) (\(M,E \in AB,\) \(N,F \in AC\)).

a) \(\frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}.\)
Đúng
Sai
b) \(\frac{{EF}}{{BC}} = \frac{3}{2}.\)
Đúng
Sai
c) \(MNEF\) là hình bình hành.
Đúng
Sai
d) Biết \({S_{ABC}} = 90{\rm{ c}}{{\rm{m}}^2},\) khi đó \({S_{MNEF}} = 30{\rm{ c}}{{\rm{m}}^2}.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Đúng.

Áp dụng định lí Thalès vào tam giác \(ABC\)\(MN\parallel BC\) ta được: \(\frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\) suy ra \(\frac{{MN}}{{BC}} = \frac{1}{3}\).

b) Sai.

Áp dụng định lí Thalès vào tam giác \(ABC\)\(EF\parallel BC\) ta được: \(\frac{{EF}}{{BC}} = \frac{{AF}}{{AC}}\) suy ra \(\frac{{EF}}{{BC}} = \frac{2}{3}\).

c) Đúng.

Xét tứ giác \(MNFE\)\(MN\parallel BC\)\(KI \bot MN\). Do đó \(MNFE\) là hình thang có hai đáy \(MN,FE\) và chiều cao \(KI.\)

d) Đúng.

Ta có: \({S_{MNEF}} = \frac{{\left( {MN + FE} \right) \cdot KI}}{2} = \frac{{\left( {\frac{1}{3}BC + \frac{2}{3}BC} \right) \cdot \frac{1}{3}AH}}{2} = \frac{1}{3}{S_{ABC}} = 30{\rm{ c}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 200

Xét \(\Delta OAB\)\(AB\parallel A'B'\) (gt) nên: \(\frac{{OB'}}{{OB}} = \frac{{A'B'}}{{AB}}\) (hệ quả định lí Thalès).

Suy ra \(\frac{5}{{OB}} = \frac{3}{{120}}\) nên \(OB = \frac{{120 \cdot 5}}{3} = 200{\rm{ }}\left( {\rm{m}} \right)\).

Vậy vật \(AB\) được đặt cách vật kính máy ảnh là 200 m.

Câu 2

a) \(M\) là trung điểm của \(BC.\)
Đúng
Sai
b) \(ME\parallel AB.\)
Đúng
Sai
c) \(AE = MC.\)
Đúng
Sai
d) \(\Delta AEN \sim \Delta CNM\).
Đúng
Sai

Lời giải

Media VietJack

a) Đúng.

Theo đề, tam giác \(ABC\) cân tại \(A\) có đường cao \(AM\) nên \(AM\) cũng là đường trung tuyến của \(\Delta ABC\).

Suy ra \(M\) là trung điểm của \(BC.\)

b) Đúng.

Ta có \(M\) là trung điểm của \(BC\), \(N\) là trung điểm của \(AB\).

Do đó, \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN\parallel AB\) hay \(ME\parallel AB\).

c) Đúng.

Ta có \(AE\parallel BC\)\(ME\parallel AB\) nên \(AEMB\) là hình bình hành.

Suy ra \(AE = MB\)\(MB = MC\) nên \(AE = MC.\)

d) Sai.

Ta có \(AE\parallel BC\) nên \(AE\parallel MC\).

Do đó, \(\Delta AEN \sim \Delta CMN\).

Câu 3

A. 30 cm.  
B. 5,7 cm.      
C. 7,5 cm.      
D. 8,5 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(MN\parallel CP.\)
Đúng
Sai
b) \(N\) là trực tâm của \(\Delta BCM.\)
Đúng
Sai
c) \(BM \bot MP.\)       
Đúng
Sai
d) \[2IJ = HB\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP