Câu hỏi:

18/11/2025 4 Lưu

Một gian hàng trưng bày giường và tủ quần áo rộng 95 m2. Diện tích để kê một chiếc giường là 3,2 m2, một chiếc tủ quần áo là 1,6 m2. Gọi \(x\) là số chiếc giường và \(y\) là số chiếc tủ quần áo được kê. Viết bất phương trình bậc nhất hai ẩn \(x,\,y\) cho phần mặt sàn để kê giường và tủ quần áo biết diện tích mặt sàn dành cho lưu thông tối thiểu là 15 m2.

A. \(32x + 16y \ge 80\);                                       
B. \(2x + y \le 50\);                             
C. \(2x + y \ge 50\);         
D. \(2x + y < 50\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Vì diện tích mặt sàn dành cho lưu thông tối thiểu là 15 m2, do đó diện tích phần mặt sàn để kê giường và tủ quần áo tối đa là: 95 – 15 = 80 (m2).

Diện tích để kê một chiếc giường là 3,2 m2, nên diện tích để kê \(x\) chiếc giường là \(3,2x\) (m2).

Diện tích để kê một chiếc tủ quần áo là 1,6 m2, nên diện tích để kê \(y\) chiếc tủ quần áo là \(1,6y\) (m2).

Tổng diện tích cho phần mặt sàn để kê \(x\) chiếc giường và \(y\) chiếc tủ quần áo là: \(3,2x + 1,6y\) (m2).

Do đó, bất phương trình cần tìm là: \(3,2x + 1,6y \le 80\) hay \(2x + y \le 50\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta phân tích được: \[\overrightarrow {AL} = \frac{b}{{b + c}}\overrightarrow {AB} + \frac{c}{{b + c}}\overrightarrow {AC} \]

\[\overrightarrow {CM} = \frac{{\overrightarrow {CA} + \overrightarrow {CB} }}{2} = \frac{{\overrightarrow {AB} - 2\overrightarrow {AC} }}{2}\]

Theo giả thiết: \[AL \bot CM \Leftrightarrow \overrightarrow {AL} .\overrightarrow {CM} = 0\]

\[ \Leftrightarrow \left( {b\overrightarrow {AB} + c\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 2\overrightarrow {AC} } \right) = 0\]

\[ \Leftrightarrow b{c^2} + b{c^2}\cos A - 2c{b^2}\cos A - 2c{b^2} = 0\]

\[ \Leftrightarrow \left( {c - 2b} \right)\left( {1 + \cos A} \right) = 0 \Rightarrow c = 2b\,\,\left( {do\,\,\cos A > - 1} \right)\]

Khi đó: \[C{M^2} = \frac{{{b^2} + {a^2}}}{2} - \frac{{{c^2}}}{4} = \frac{{{a^2} - {b^2}}}{2}\]

\[A{L^2} = \frac{1}{9}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{9}\left( {A{B^2} + A{C^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} } \right) = \frac{2}{9}\left( {9{b^2} - {a^2}} \right)\]

\[\frac{{CM}}{{AL}} = \frac{{\sqrt 3 }}{2} \Leftrightarrow \frac{{C{M^2}}}{{A{L^2}}} = \frac{9}{4}.\frac{{{a^2} - {b^2}}}{{9{b^2} - {a^2}}} = \frac{3}{4} \Leftrightarrow {a^2} = 3{b^2}\]

Do đó, \[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{b^2} + {{\left( {2b} \right)}^2} - 3{b^2}}}{{2b \cdot 2b}} = \frac{1}{2}\].

Lời giải

Gọi \(C\) là vị trí ngọn hải đăng, từ \(C\) kẻ \(CH\) vuông góc với đường thẳng \(AB\) tại \(H\). Khi đó \(CH\) là khoảng cách từ ngọn hải đăng tới bờ biển. Ta mô phỏng bài toán như hình vẽ sau:

Một người đi dọc bờ biển từ vị trí \( (ảnh 2)

\(\widehat {CBH}\) là góc ngoài tại đỉnh \(B\) của tam giác \(ABC\) nên \(\widehat {CBH} = \widehat {CAB} + \widehat {ACB}\).

Suy ra \(\widehat {ACB} = \widehat {CBH} - \widehat {CAB} = 70^\circ - 50^\circ = 20^\circ \).

Áp dụng định lí sin trong tam giác \(ABC\) ta có:

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {CAB}}}\)\( \Rightarrow BC = \frac{{AB\sin \widehat {CAB}}}{{\sin \widehat {ACB}}} = \frac{{20 \cdot \sin 50^\circ }}{{\sin 20^\circ }} \approx 44,8\).

Tam giác \(CBH\) vuông tại \(H\) nên ta có:

\(CH = BC\sin \widehat {CBH} = 44,8 \cdot \sin 70^\circ \approx 42,1\).

Vậy ngọn hải đăng cách bờ biển khoảng 42,1 m.

Câu 3

A. \(O\left( {0;\,\,0} \right)\);                             
B. \[M\left( {1;\,\,1} \right)\];        
C. \[N\left( { - 1;\,\,1} \right)\];                      
D. \[P\left( { - 1;\,\, - 1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam giác \(ABC\) vuông cân tại \(A\). Khi đó \(\sin B\) bằng 

A. 0;                            
B. \(\frac{{\sqrt 2 }}{2}\);                         
C. \(\frac{{\sqrt 3 }}{2}\);                         
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho \(\alpha \)\(\beta \) là hai góc khác nhau và bù nhau. Trong các đẳng thức sau đây, đẳng thức nào sai?

A. \(\sin \alpha = \sin \beta \);                                     
B. \(\cot \alpha = \cot \beta \); 
C. \(\tan \alpha = - \tan \beta \);                                     
D. \(\cos \alpha = - \cos \beta \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {CA} + \overrightarrow {AB} = \overrightarrow {BC} \);                                   
B. \[\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} \];                                   
C. \(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {CB} \);                                   
D. \(\overrightarrow {AB} - \overrightarrow {BC} = \overrightarrow {CA} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. “Nếu \(n\) chia hết cho 2 thì \(n\) là số tự nhiên chẵn”;
B. “Nếu \(n\) là số tự nhiên chẵn thì \(n\) chia hết cho 2”;
C. “\(n\) là số tự nhiên chẵn chia hết cho 2”;
D. “\(n\) là số tự nhiên thì \(n\) chẵn và chia hết cho 2”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP