Câu hỏi:

19/11/2025 142 Lưu

Cho mẫu số liệu ghép nhóm về thời gian truy cập Internet mỗi buổi tối của một số học sinh như sau:

Thời gian (phút)

\[\left[ {9,5;12,5} \right)\]

\(\left[ {12,5;15,5} \right)\)

\(\left[ {15,5;18,5} \right)\)

\(\left[ {18,5;21,5} \right)\)

\(\left[ {21,5;24,5} \right)\)

Số học sinh

3

12

15

24

2

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm trên là

A. \(15,25.\)     
B. \(20.\)  
C. \(18,1.\)     
D. \(19,34.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cỡ mẫu \(n = 3 + 12 + 15 + 24 + 2 = 56.\)

Gọi \({x_1},...,{x_{56}}\) là thời gian truy cập Internet mỗi buổi tối của 56 học sinh và giả sử dãy này đã được sắp xếp theo thứ tự không giảm.

Khi đó: \({x_1},...,{x_3}\) thuộc nhóm \[\left[ {9,5;12,5} \right);\]

            \({x_4},...,{x_{15}}\) thuộc nhóm \(\left[ {12,5;15,5} \right);\)

            \({x_{16}},...,{x_{30}}\) thuộc nhóm \(\left[ {15,5;18,5} \right);\)

            \({x_{31}},...,{x_{54}}\) thuộc nhóm \(\left[ {18,5;21,5} \right);\)

            \({x_{55}},\,\,{x_{56}}\) thuộc nhóm \(\left[ {21,5;24,5} \right).\)

Ta có tứ phân vị thứ hai \({Q_2}\) chính là trung vị \({M_e}\) và trung vị là \(\frac{{{x_{28}} + {x_{29}}}}{2}.\)

\({x_{28}},\,\,{x_{29}}\) thuộc nhóm \(\left[ {15,5;18,5} \right)\) nên nhóm này chứa trung vị.

Do đó, \(p = 3;\,\,{a_3} = 15,5;\,\,{m_3} = 15;\,\,{m_1} + {m_2} = 3 + 12 = 15;\,\,{a_4} - {a_3} = 18,5 - 15,5 = 3,\) ta có:

\({M_e} = 15,5 + \frac{{\frac{{56}}{2} - 15}}{{15}}.3 = 18,1.\)

Vậy tứ phân vị thứ hai của mẫu số liệu ghép nhóm đã cho là \(18,1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)  
B. \(y = \frac{{x + 1}}{{x - 2}}.\)            
C. \(y = \frac{1}{{{x^2} - 4}}.\)         
D. \(y = \frac{{\sqrt x }}{{x - 2}}.\)

Lời giải

Đáp án đúng là: A

Xét hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)

Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2.\)

Tập xác định của hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\)\(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)

Hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức nên nó liên tục trên tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) chứa \(x = 2.\)

Như vậy, hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) cũng sẽ liên tục tại \(x = 2.\)

Lời giải

Media VietJack

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)

Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)

Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)

\( \Rightarrow OM//SD.\)

Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)

\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)

b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)

\[ \Rightarrow K \in AN;\,\,K \in CD.\]

\(AN \subset \left( {AMN} \right)\)\(CD \subset \left( {SCD} \right).\)

\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)

\(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]

\( \Rightarrow H \in MN;\,\,H \in SC.\)

\(MN \subset \left( {AMN} \right)\)\(SC \subset \left( {SCD} \right).\)

\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)

Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)