Câu hỏi:

19/11/2025 13 Lưu

Tính các giới hạn sau:

a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 3n} - n} \right).\]                                                                       b) \[\mathop {\lim }\limits_{x \to 2} \frac{{5 - x}}{{{{\left( {x - 2} \right)}^2}}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 3n} - n} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {{n^2} + 3n} \right) - {n^2}}}{{\sqrt {{n^2} + 3n} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{3n}}{{\sqrt {{n^2} + 3n} + n}}\]

\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{3n}}{{n\sqrt {1 + \frac{3}{n}} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{3}{{\sqrt {1 + \frac{3}{n}} + 1}} = \frac{3}{2}.\]

b) Ta có: \[\mathop {\lim }\limits_{x \to 2} \left( {5 - x} \right) = 5 - 2 = 3 > 0;\]

\[\mathop {\lim }\limits_{x \to 2} {\left( {x - 2} \right)^2} = 0,\,\,{\left( {x - 2} \right)^2} > 0\,\,\forall x \ne 2.\]

Do đó, \[\mathop {\lim }\limits_{x \to 2} \frac{{5 - x}}{{{{\left( {x - 2} \right)}^2}}} = + \infty .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)

Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)

Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)

\( \Rightarrow OM//SD.\)

Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)

\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)

b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)

\[ \Rightarrow K \in AN;\,\,K \in CD.\]

\(AN \subset \left( {AMN} \right)\)\(CD \subset \left( {SCD} \right).\)

\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)

\(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]

\( \Rightarrow H \in MN;\,\,H \in SC.\)

\(MN \subset \left( {AMN} \right)\)\(SC \subset \left( {SCD} \right).\)

\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)

Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)

Câu 2

A. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha + \frac{1}{2}.\)  
B. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha + \frac{{\sqrt 3 }}{2}\cos \alpha .\)
C. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha - \frac{{\sqrt 3 }}{2}\cos \alpha .\)           
D. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Đáp án đúng là: D

Ta có: \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP