Câu hỏi:

19/11/2025 13 Lưu

Bảng thống kê sau cho biết tốc độ (km/h) của một số xe máy khi đi qua vị trí có cảnh sát giao thông đang làm nhiệm vụ đo tốc độ trên đường trong khu dân cư, tốc độ tối đa theo quy định là 50 (km/h).

Tốc độ

\[\left[ {20;35} \right]\]

\(\left( {35;50} \right]\)

\(\left( {50;60} \right]\)

\(\left( {60;70} \right]\)

\(\left( {70;85} \right]\)

\(\left( {85;100} \right]\)

Số phương tiện giao thông

\(27\)

\(70\)

\(8\)

\(3\)

\(2\)

 

\(1\)

Có bao nhiêu xe vi phạm quy định về an toàn giao thông?

A. \(13.\)    
B. \(5.\)  
C. \(84.\)      
D. \(14.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

tốc độ tối đa theo quy định là 50 (km/h) nên các nhóm tốc độ \(\left( {50;60} \right],\) \(\left( {60;70} \right],\) \(\left( {70;85} \right],\) \(\left( {85;100} \right]\) là các nhóm mang xe vi phạm quy định về an toàn giao thông.

Vậy số xe vi phạm quy định về an toàn giao thông là \(8 + 3 + 2 + 1 = 14.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)

Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)

Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)

\( \Rightarrow OM//SD.\)

Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)

\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)

b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)

\[ \Rightarrow K \in AN;\,\,K \in CD.\]

\(AN \subset \left( {AMN} \right)\)\(CD \subset \left( {SCD} \right).\)

\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)

\(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]

\( \Rightarrow H \in MN;\,\,H \in SC.\)

\(MN \subset \left( {AMN} \right)\)\(SC \subset \left( {SCD} \right).\)

\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)

Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)

Câu 2

A. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha + \frac{1}{2}.\)  
B. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha + \frac{{\sqrt 3 }}{2}\cos \alpha .\)
C. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha - \frac{{\sqrt 3 }}{2}\cos \alpha .\)           
D. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Đáp án đúng là: D

Ta có: \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP