Câu hỏi:

19/11/2025 7 Lưu

Cho các đồ thị hàm số sau:

Media VietJack

Hình 1

Media VietJack

Hình 2

Media VietJack

Hình 3

Media VietJack

Hình 4

Hình nào là đồ thị của hàm số \(y = \sin x?\)

A. Hình 1.             
B. Hình 2.     
C. Hình 3.          
D. Hình 4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Đồ thị của hàm số \(y = \sin x\) đối xứng qua gốc tọa độ, do đó Hình 2 là đồ thị của hàm số \(y = \sin x\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Media VietJack

\(I,J\) lần lượt là trung điểm \(SA,SB\) nên \[IJ\] là đường trung bình của tam giác \(SAB\), do đó \(IJ\,{\rm{//}}\,AB\).

Tương tự, \(EF\) cũng là đường trung bình của tam giác \(SCD\) nên \[EF\,{\rm{//}}\,CD\].

\[CD\,{\rm{// }}AB\] (đáy \(ABCD\) là hình bình hành).

Do đó, bốn đường thẳng \(AB,\,CD,\,EF,\,IJ\) đôi một song song với nhau.

Vậy đường thẳng \[IJ\] không song song với đường thẳng \[AD.\]

Lời giải

1.

a) \[\mathop {\lim }\limits_{n \to + \infty } \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\left( {\sqrt {n + 1} + \sqrt n } \right)}}{{\sqrt {n + 1} + \sqrt n }}\]

\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {n + 1 - n} \right)}}{{\sqrt {n + 1} + \sqrt n }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt {n + 1} + \sqrt n }}\]

\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt n \left( {\sqrt {1 + \frac{1}{n}} + 1} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{\sqrt {1 + \frac{1}{n}} + 1}} = \frac{1}{2}\]. (0,5 điểm)

b) \(\mathop {\lim }\limits_{x \to \frac{\pi }{6}} \frac{{2\tan x + 1}}{{\sin x + 1}} = \frac{{2\tan \frac{\pi }{6} + 1}}{{\sin \frac{\pi }{6} + 1}} = \frac{{4\sqrt 3 + 6}}{9}\)

2.

Tập xác định \(D = \mathbb{R}\).

Với \(x \ne 1\) ta có \(f\left( x \right) = \frac{{{x^3} + 8x + m}}{{x - 1}} = {x^2} + x + 9 + \frac{{m + 9}}{{x - 1}}\).

\(f\left( x \right)\) liên tục tại \(x = 1\) khi và chỉ khi limx1f(x) = f(1) (1) 

Nếu \(m + 9 \ne 0 \Leftrightarrow m \ne - 9\) thì không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\).

Do đó \(m + 9 = 0\)\( \Leftrightarrow m = - 9\). Suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).

Vậy \(\left( 1 \right) \Leftrightarrow n = 11\), suy ra \(P = m + n = - 9 + 11 = 2\).

Câu 3

A. \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]    
B. \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]
C. \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]  
D. \(A{A_1}{B_1}B\) là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.,k \in \mathbb{Z}\].       
B. \[x = \pm \alpha + k2\pi ,\,\left( {k \in \mathbb{Z}} \right).\]
C. \[\left[ \begin{array}{l}x = \alpha + k\pi \\x = \pi - \alpha + k\pi \end{array} \right.,\left( {k \in \mathbb{Z}} \right)\].
D. \[x = \alpha + k\pi ,\,\left( {k \in \mathbb{Z}} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hình lăng trụ có đáy là tam giác được gọi là lăng trụ tam giác.
B. Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ hộp.
C. Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ tứ giác.
D. Hình lăng trụ tứ giác có hai đáy là hình bình hành được gọi là hình hộp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP