Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I,J,E,F\) lần lượt là trung điểm \(SA,SB,SC,SD.\) Trong các đường thẳng sau, đường thẳng nào không song song với \[IJ?\]
Quảng cáo
Trả lời:
Đáp án đúng là: C

Vì \(I,J\) lần lượt là trung điểm \(SA,SB\) nên \[IJ\] là đường trung bình của tam giác \(SAB\), do đó \(IJ\,{\rm{//}}\,AB\).
Tương tự, \(EF\) cũng là đường trung bình của tam giác \(SCD\) nên \[EF\,{\rm{//}}\,CD\].
Mà \[CD\,{\rm{// }}AB\] (đáy \(ABCD\) là hình bình hành).
Do đó, bốn đường thẳng \(AB,\,CD,\,EF,\,IJ\) đôi một song song với nhau.
Vậy đường thẳng \[IJ\] không song song với đường thẳng \[AD.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1.
a) \[\mathop {\lim }\limits_{n \to + \infty } \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\left( {\sqrt {n + 1} + \sqrt n } \right)}}{{\sqrt {n + 1} + \sqrt n }}\]
\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {n + 1 - n} \right)}}{{\sqrt {n + 1} + \sqrt n }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt {n + 1} + \sqrt n }}\]
\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt n \left( {\sqrt {1 + \frac{1}{n}} + 1} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{\sqrt {1 + \frac{1}{n}} + 1}} = \frac{1}{2}\]. (0,5 điểm)
b) \(\mathop {\lim }\limits_{x \to \frac{\pi }{6}} \frac{{2\tan x + 1}}{{\sin x + 1}} = \frac{{2\tan \frac{\pi }{6} + 1}}{{\sin \frac{\pi }{6} + 1}} = \frac{{4\sqrt 3 + 6}}{9}\).
2.
Tập xác định \(D = \mathbb{R}\).
Với \(x \ne 1\) ta có \(f\left( x \right) = \frac{{{x^3} + 8x + m}}{{x - 1}} = {x^2} + x + 9 + \frac{{m + 9}}{{x - 1}}\).
\(f\left( x \right)\) liên tục tại \(x = 1\) khi và chỉ khi
Nếu \(m + 9 \ne 0 \Leftrightarrow m \ne - 9\) thì không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\).
Do đó \(m + 9 = 0\)\( \Leftrightarrow m = - 9\). Suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).
Vậy \(\left( 1 \right) \Leftrightarrow n = 11\), suy ra \(P = m + n = - 9 + 11 = 2\).
Câu 2
Lời giải
Đáp án đúng là: B
Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ tứ giác nên đáp án B sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
