Câu hỏi:

19/11/2025 9 Lưu

Tính các giới hạn sau:

a) \[\mathop {\lim }\limits_{n \to + \infty } \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\];                                               b) \(\mathop {\lim }\limits_{x \to \frac{\pi }{6}} \frac{{2\tan x + 1}}{{\sin x + 1}}\).

2. Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} + 8x + m}}{{x - 1}}\;\,\,{\rm{khi}}\;\,x \ne 1\\n\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\,\,\,{\rm{khi}}\;\,x = 1\end{array} \right.\] , với \(m\),\(n\) là các tham số thực. Biết rằng hàm số \(f\left( x \right)\) liên tục tại \(x = 1\), khi đó hãy tính giá trị của biểu thức \(P = m + n\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

1.

a) \[\mathop {\lim }\limits_{n \to + \infty } \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\left( {\sqrt {n + 1} + \sqrt n } \right)}}{{\sqrt {n + 1} + \sqrt n }}\]

\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {n + 1 - n} \right)}}{{\sqrt {n + 1} + \sqrt n }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt {n + 1} + \sqrt n }}\]

\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt n \left( {\sqrt {1 + \frac{1}{n}} + 1} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{\sqrt {1 + \frac{1}{n}} + 1}} = \frac{1}{2}\]. (0,5 điểm)

b) \(\mathop {\lim }\limits_{x \to \frac{\pi }{6}} \frac{{2\tan x + 1}}{{\sin x + 1}} = \frac{{2\tan \frac{\pi }{6} + 1}}{{\sin \frac{\pi }{6} + 1}} = \frac{{4\sqrt 3 + 6}}{9}\)

2.

Tập xác định \(D = \mathbb{R}\).

Với \(x \ne 1\) ta có \(f\left( x \right) = \frac{{{x^3} + 8x + m}}{{x - 1}} = {x^2} + x + 9 + \frac{{m + 9}}{{x - 1}}\).

\(f\left( x \right)\) liên tục tại \(x = 1\) khi và chỉ khi limx1f(x) = f(1) (1) 

Nếu \(m + 9 \ne 0 \Leftrightarrow m \ne - 9\) thì không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\).

Do đó \(m + 9 = 0\)\( \Leftrightarrow m = - 9\). Suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).

Vậy \(\left( 1 \right) \Leftrightarrow n = 11\), suy ra \(P = m + n = - 9 + 11 = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Media VietJack

\(I,J\) lần lượt là trung điểm \(SA,SB\) nên \[IJ\] là đường trung bình của tam giác \(SAB\), do đó \(IJ\,{\rm{//}}\,AB\).

Tương tự, \(EF\) cũng là đường trung bình của tam giác \(SCD\) nên \[EF\,{\rm{//}}\,CD\].

\[CD\,{\rm{// }}AB\] (đáy \(ABCD\) là hình bình hành).

Do đó, bốn đường thẳng \(AB,\,CD,\,EF,\,IJ\) đôi một song song với nhau.

Vậy đường thẳng \[IJ\] không song song với đường thẳng \[AD.\]

Câu 2

A. Hình lăng trụ có đáy là tam giác được gọi là lăng trụ tam giác.
B. Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ hộp.
C. Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ tứ giác.
D. Hình lăng trụ tứ giác có hai đáy là hình bình hành được gọi là hình hộp.

Lời giải

Đáp án đúng là: B

Hình lăng trụ có đáy là tứ giác được gọi là lăng trụ tứ giác nên đáp án B sai.

Câu 3

A. \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]    
B. \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]
C. \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]  
D. \(A{A_1}{B_1}B\) là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\sin \alpha = {y_0}\).     
B. \(\sin \alpha = {x_0}\).            
C. \(\sin \alpha = - {x_0}\).  
D. \(\sin \alpha = - {y_0}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP