Câu hỏi:

20/11/2025 7 Lưu

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^2} + 1.\) Dãy số \(\left( {{u_n}} \right)\) là dãy số

Không đổi.

Giảm.

Không tăng không giảm.

Tăng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Xét dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^2} + 1\) ta có: \({u_{n + 1}} = {\left( {n + 1} \right)^2} + 1 = {n^2} + 2n + 2.\)

\( \Rightarrow {u_{n + 1}} - {u_n} = \left( {{n^2} + 2n + 2} \right) - \left( {{n^2} + 1} \right)\)

\( = {n^2} + 2n + 2 - {n^2} - 1\)

\( = 2n + 1 > 0,\,\,\forall n \in {\mathbb{N}^*}.\)

\( \Rightarrow {u_{n + 1}} > {u_n},\,\,\forall n \in {\mathbb{N}^*}.\)

Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

\(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)

\(y = \frac{{x + 1}}{{x - 2}}.\)

\(y = \frac{1}{{{x^2} - 4}}.\)

\(y = \frac{{\sqrt x }}{{x - 2}}.\)

Lời giải

Đáp án đúng là: A

Xét hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)

Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2.\)

Tập xác định của hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)

Hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức nên nó liên tục trên tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) chứa \(x = 2.\)

Như vậy, hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) cũng sẽ liên tục tại \(x = 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP