Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N,\,\,P\) theo thứ tự lần lượt là trung điểm của \(SA,\,\,SB,\,\,SD.\) Khẳng định nào sau đây sai?
\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)
\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)
\(MN{\rm{//}}\left( {ABCD} \right).\)
\(MP{\rm{//}}\left( {ABCD} \right).\)
Quảng cáo
Trả lời:
Đáp án đúng là: B

Ta có: \(P\) là trung điểm của \(SD.\)
\( \Rightarrow P \in SD\) mà \(SD \subset \left( {SCD} \right).\)
\( \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right).\)
Vậy hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {SCD} \right)\) không song song với nhau.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)
Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)
Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)
\( \Rightarrow OM{\rm{//}}SD.\)
Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)
\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)
b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)
\[ \Rightarrow K \in AN;\,\,K \in CD.\]
Mà \(AN \subset \left( {AMN} \right)\) và \(CD \subset \left( {SCD} \right).\)
\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)
Vì \(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\)
Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]
\( \Rightarrow H \in MN;\,\,H \in SC.\)
Mà \(MN \subset \left( {AMN} \right)\) và \(SC \subset \left( {SCD} \right).\)
\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)
Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)
Câu 2
\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = 5\) và số hạng đầu \({u_1} = \frac{3}{2}\).
\(\left( {{u_n}} \right)\) không phải là cấp số nhân.
\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = \frac{5}{2}\) và số hạng đầu \({u_1} = 3\).
\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = 5\) và số hạng đầu \({u_1} = \frac{{15}}{2}\).
Lời giải
Đáp án đúng là: D
Có \({u_1} = \frac{3}{2} \cdot {5^1} = \frac{{15}}{2}\);
\({u_2} = \frac{3}{2} \cdot {5^2} = \frac{{15}}{2} \cdot 5 = {u_1} \cdot 5\);
\({u_3} = \frac{3}{2} \cdot {5^3} = \frac{{15}}{2} \cdot {5^2} = {u_1} \cdot {5^2}\);
\({u_4} = \frac{3}{2} \cdot {5^4} = \frac{{15}}{2} \cdot {5^3} = {u_1} \cdot {5^3}\).
Do đó \(\left( {{u_n}} \right)\) là một cấp số nhân có công bội \(q = 5\) và số hạng đầu \({u_1} = \frac{{15}}{2}\).
Câu 3
\(\left( {ABCD} \right).\)
\(\left( {SAD} \right).\)
\(\left( {SAC} \right).\)
\(\left( {SBD} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\( - 1;\,\,2;\,\,5\).
\( - 1;\,\,3;\,\,7\).
\(1;\,\,4;\,\,7\).
\(4;\,\,7;\,\,10\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(CD{\rm{//}}\left( {SAB} \right).\)
\(AB{\rm{//}}\left( {SCD} \right).\)
\[BC{\rm{//}}\left( {SAD} \right).\]
\(AC{\rm{//}}\left( {SBD} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.