Câu hỏi:

20/11/2025 10 Lưu

Hàm số nào sau đây liên tục tại \(x = 2\)?

\(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)

\(y = \frac{{x + 1}}{{x - 2}}.\)

\(y = \frac{1}{{{x^2} - 4}}.\)

\(y = \frac{{\sqrt x }}{{x - 2}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Xét hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}.\)

Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2.\)

Tập xác định của hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)

Hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức nên nó liên tục trên tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) chứa \(x = 2.\)

Như vậy, hàm số \(y = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) cũng sẽ liên tục tại \(x = 2.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Nhóm chiều cao thứ 3 là nhóm \[\left[ {167;171} \right).\]

Vậy giá trị đại diện \({c_3}\) của nhóm chiều cao thứ \(3\) là \({c_3} = \frac{{167 + 171}}{2} = 169.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.

Ba điểm phân biệt.

B.

Hai đường thẳng cắt nhau.

C.

Bốn điểm phân biệt.

D.

Một điểm và một đường thẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP