Câu hỏi:

20/11/2025 103 Lưu

Gia đình ông An cần khoan một cái giếng. Biết rằng giá của mét khoan đầu tiên là 200 000 đồng và kể từ mét khoan thứ hai, mỗi mét khoan sau sẽ tăng thêm \(6\% \) so với mét khoan trước đó. Hỏi nếu ông An khoan cái giếng sâu 35 m thì hết bao nhiêu tiền (làm tròn đến hàng nghìn).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \({u_n}\) là giá tiền của mét khoan thứ \(n\) với \(n \in {\mathbb{N}^*}.\)

Mét khoan đầu tiên có giá tiền là \({u_1} = 200\,\,000\) (đồng).

Mét khoan thứ hai có giá tiền là

\({u_2} = 200\,\,000 + 200\,\,000.6\% = 200\,\,000\left( {1 + 6\% } \right) = 200\,\,000.1,06\) (đồng).

Mét khoan thứ ba có giá tiền là

\({u_3} = 200\,\,000.1,06 + 200\,\,000.1,06.6\% \)

\( = 200\,\,000.1,06\left( {1 + 6\% } \right) = 200\,\,000.1,{06^2}\) (đồng).

Khi đó, dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = 200\,\,000\) và công bội \(q = 1,06.\)

Ta có công thức số hạng tổng quát \({u_n} = 200\,\,00.1,{06^{n - 1}}\) (đồng).

Vậy nếu ông An khoan cái giếng sâu 35 m thì hết số tiền là:

\[{S_{35}} = \frac{{200\,\,000\left( {1 - 1,{{06}^{35}}} \right)}}{{1 - 1,06}} = 2\,2\;28\,6\;955,97 \approx 22\;287\;000\,\] (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp  S . A B C D  có đáy là hình bình hành tâm  O .  Gọi  M  là trung điểm của  S B ,   N  là điểm trên cạnh  B C  sao cho  B N = 2 C N .  (a) Chứng minh rằng  O M / / ( S C D ) . (ảnh 1)

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)

Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)

Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)

\( \Rightarrow OM{\rm{//}}SD.\)

Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)

\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)

b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)

\[ \Rightarrow K \in AN;\,\,K \in CD.\]

Mà \(AN \subset \left( {AMN} \right)\) và \(CD \subset \left( {SCD} \right).\)

\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)

Vì \(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\)

Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]

\( \Rightarrow H \in MN;\,\,H \in SC.\)

Mà \(MN \subset \left( {AMN} \right)\) và \(SC \subset \left( {SCD} \right).\)

\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)

Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)

Câu 2

\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)

\(MN{\rm{//}}\left( {ABCD} \right).\)

\(MP{\rm{//}}\left( {ABCD} \right).\)

Lời giải

Đáp án đúng là: B

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình bình hành. Gọi  M , N , P  theo thứ tự lần lượt là trung điểm của  S A , S B , S D .  Khẳng định nào sau đây sai? (ảnh 1)

Ta có: \(P\) là trung điểm của \(SD.\)

\( \Rightarrow P \in SD\) mà \(SD \subset \left( {SCD} \right).\)

\( \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right).\)

Vậy hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {SCD} \right)\) không song song với nhau.

Câu 3

\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = 5\) và số hạng đầu \({u_1} = \frac{3}{2}\).

\(\left( {{u_n}} \right)\) không phải là cấp số nhân.

\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = \frac{5}{2}\) và số hạng đầu \({u_1} = 3\).

\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = 5\) và số hạng đầu \({u_1} = \frac{{15}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(CD{\rm{//}}\left( {SAB} \right).\)

\(AB{\rm{//}}\left( {SCD} \right).\)

\[BC{\rm{//}}\left( {SAD} \right).\]

\(AC{\rm{//}}\left( {SBD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP