Cho tứ diện \(ABCD.\) Gọi \(I,\,\,J\) lần lượt là trọng tâm của các tam giác \(ABC\) và \(ABD.\) Khẳng định nào sau đây đúng?
\(IJ\) cắt \(AB.\)
\(IJ\) song song \(AB.\)
\(IJ\) và \(CD\) là hai đường thẳng chéo nhau.
\(IJ\) song song \(CD.\)
Quảng cáo
Trả lời:
Đáp án đúng là: D

Gọi \(M\) là trung điểm của \(AB.\)
Xét \(\Delta ABC\) có: \(CM\) là đường trung tuyến và \(I\) là trọng tâm của \(\Delta ABC.\)
\( \Rightarrow \frac{{CI}}{{CM}} = \frac{2}{3}.\)
Xét \(\Delta ABD\) có: \(DM\) là đường trung tuyến và \(J\) là trọng tâm của \(\Delta ABD.\)
\( \Rightarrow \frac{{DJ}}{{DM}} = \frac{2}{3}.\)
Như vậy \(\frac{{CI}}{{CM}} = \frac{{DJ}}{{DM}}\) nên theo định lí Thalès đảo trong \(\Delta MCD\) có \(IJ{\rm{//}}CD.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)
Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)
Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)
\( \Rightarrow OM{\rm{//}}SD.\)
Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)
\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)
b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)
\[ \Rightarrow K \in AN;\,\,K \in CD.\]
Mà \(AN \subset \left( {AMN} \right)\) và \(CD \subset \left( {SCD} \right).\)
\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)
Vì \(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\)
Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]
\( \Rightarrow H \in MN;\,\,H \in SC.\)
Mà \(MN \subset \left( {AMN} \right)\) và \(SC \subset \left( {SCD} \right).\)
\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)
Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)
Câu 2
\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)
\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)
\(MN{\rm{//}}\left( {ABCD} \right).\)
\(MP{\rm{//}}\left( {ABCD} \right).\)
Lời giải
Đáp án đúng là: B

Ta có: \(P\) là trung điểm của \(SD.\)
\( \Rightarrow P \in SD\) mà \(SD \subset \left( {SCD} \right).\)
\( \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right).\)
Vậy hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {SCD} \right)\) không song song với nhau.
Câu 3
\(\left( {ABCD} \right).\)
\(\left( {SAD} \right).\)
\(\left( {SAC} \right).\)
\(\left( {SBD} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = 5\) và số hạng đầu \({u_1} = \frac{3}{2}\).
\(\left( {{u_n}} \right)\) không phải là cấp số nhân.
\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = \frac{5}{2}\) và số hạng đầu \({u_1} = 3\).
\(\left( {{u_n}} \right)\) là cấp số nhân có công bội \(q = 5\) và số hạng đầu \({u_1} = \frac{{15}}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\( - 1;\,\,2;\,\,5\).
\( - 1;\,\,3;\,\,7\).
\(1;\,\,4;\,\,7\).
\(4;\,\,7;\,\,10\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\lim \frac{3}{{n + 1}} = 0.\)
\(\lim {\left( { - 2} \right)^n} = + \infty .\)
\(\lim \left( {\sqrt {{n^2} + 2n + 3} - n} \right) = 1.\)
\(\lim \frac{1}{{{2^n}}} = 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(CD{\rm{//}}\left( {SAB} \right).\)
\(AB{\rm{//}}\left( {SCD} \right).\)
\[BC{\rm{//}}\left( {SAD} \right).\]
\(AC{\rm{//}}\left( {SBD} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.