Câu hỏi:

20/11/2025 7 Lưu

Cho các giới hạn: \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 1;\,\,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = - 2\) thì \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right]\) bằng

\( - 2\).

\(2\).

\(3\).

\( - 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right]\)\( = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) - \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = 1 - \left( { - 2} \right) = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.

Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau.

B.

Hình chiếu song song của hai đường thẳng cắt nhau thì song song.

C.

Hình chiếu song song của một hình vuông là một hình vuông.

D.

Hình chiếu song song của một lục giác đều là một lục giác đều.

Lời giải

Đáp án đúng là: A

Xét từng đáp án:

Đáp án A: Giả sử \(a\) và \(b\) là hai đường thẳng chéo nhau có hình chiếu là \(a'\) và \(b'\). Nếu mặt phẳng \(\left( {a,\,\,a'} \right)\) và mặt phẳng \(\left( {b,\,\,b'} \right)\) song song với nhau thì \(a'\,{\rm{//}}\,b'\). Vậy hình chiếu song song của hai đường thẳng chéo nhau có thể song song. Vậy đáp án A đúng.

Đáp án B: Nếu \(a\) và \(b\) là hai đường thẳng cắt nhau tại \(O\) và hình chiếu của \(O\) là \(O'\) thì \(O' \in a'\) và \(O' \in b'\) tức là \(a'\) và \(b'\) có điểm chung. Vậy hình chiếu song song của hai đường thẳng cắt nhau không thể song song được. Vậy đáp án B sai.

Đáp án C: Hình chiếu song song của một hình vuông có thể là hình bình hành. Vậy đáp án C sai.

Đáp án D: Hình chiếu song song của một lục giác đều có thể là một lục giác. Vậy đáp án D sai.

Lời giải

Đáp án đúng là: D

Trong mỗi khoảng thời gian, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Tổng số học sinh tham gia khảo sát là \(n = 42\). Thời gian trung bình tập thể dục trong ngày của các học sinh khối 11 trên là

\(\overline x = \frac{{5 \cdot 10 + 9 \cdot 30 + 12 \cdot 50 + 10 \cdot 70 + 6 \cdot 90}}{{42}} \approx 51,43\) (phút).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\mathbb{R}\backslash \left\{ {n\pi ,n \in \mathbb{Z}} \right\}\).

\(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + l2\pi ,l \in \mathbb{Z}} \right\}\).

\(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).

\(\mathbb{R}\backslash \left\{ {\frac{{m\pi }}{2},m \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\[\left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.,k \in \mathbb{Z}\].

\[x = \pm \alpha + k2\pi ,\,\left( {k \in \mathbb{Z}} \right).\]

\[\left[ \begin{array}{l}x = \alpha + k\pi \\x = \pi - \alpha + k\pi \end{array} \right.,\left( {k \in \mathbb{Z}} \right)\].

\[x = \alpha + k\pi ,\,\left( {k \in \mathbb{Z}} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP