Cho mặt phẳng \(\left( P \right)\) và đường thẳng \(d \subset \left( P \right)\). Mệnh đề nào sau đây đúng?
Nếu \(A \notin d\) thì \(A \notin \left( P \right)\).
Nếu \(A \in \left( P \right)\) thì \(A \in d\).
Nếu 3 điểm \(A,B,C\) thuộc \(\left( P \right)\) và \(A,B,C\) thẳng hàng thì \(A,B,C\) thuộc \(d\).
Nếu \(A \in d\) thì \(A \in \left( P \right)\).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Mệnh đề A sai vì điểm \(A\) có thể thuộc mặt phẳng \(\left( P \right)\).
Mệnh đề B sai vì \(A \in \left( P \right)\) thì \(A\) có thể không thuộc đường thẳng \(d\).

Mệnh đề C sai vì ba điểm \(A,B,C\) có thể thuộc đường thẳng khác \(d\) và nằm trong \(\left( P \right)\).

Mệnh đề D là mệnh đề đúng vì \(d \subset \left( P \right)\) nên \(A \in d\) thì \(A \in \left( P \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right]\)\( = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) - \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = 1 - \left( { - 2} \right) = 3\).
Câu 2
Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau.
Hình chiếu song song của hai đường thẳng cắt nhau thì song song.
Hình chiếu song song của một hình vuông là một hình vuông.
Hình chiếu song song của một lục giác đều là một lục giác đều.
Lời giải
Đáp án đúng là: A
Xét từng đáp án:
Đáp án A: Giả sử \(a\) và \(b\) là hai đường thẳng chéo nhau có hình chiếu là \(a'\) và \(b'\). Nếu mặt phẳng \(\left( {a,\,\,a'} \right)\) và mặt phẳng \(\left( {b,\,\,b'} \right)\) song song với nhau thì \(a'\,{\rm{//}}\,b'\). Vậy hình chiếu song song của hai đường thẳng chéo nhau có thể song song. Vậy đáp án A đúng.

Đáp án B: Nếu \(a\) và \(b\) là hai đường thẳng cắt nhau tại \(O\) và hình chiếu của \(O\) là \(O'\) thì \(O' \in a'\) và \(O' \in b'\) tức là \(a'\) và \(b'\) có điểm chung. Vậy hình chiếu song song của hai đường thẳng cắt nhau không thể song song được. Vậy đáp án B sai.
Đáp án C: Hình chiếu song song của một hình vuông có thể là hình bình hành. Vậy đáp án C sai.
Đáp án D: Hình chiếu song song của một lục giác đều có thể là một lục giác. Vậy đáp án D sai.
Câu 3
\(56,71\).
\(51,42\).
\(53,15\).
\(51,43\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(P = \frac{{11}}{{100}}.\)
\(P = - \frac{{11}}{{100}}.\)
\(P = \frac{7}{{25}}.\)
\(P = \frac{{10}}{{11}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Hình 1.
Hình 2.
Hình 3.
Hình 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\mathbb{R}\backslash \left\{ {n\pi ,n \in \mathbb{Z}} \right\}\).
\(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + l2\pi ,l \in \mathbb{Z}} \right\}\).
\(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).
\(\mathbb{R}\backslash \left\{ {\frac{{m\pi }}{2},m \in \mathbb{Z}} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\[\left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.,k \in \mathbb{Z}\].
\[x = \pm \alpha + k2\pi ,\,\left( {k \in \mathbb{Z}} \right).\]
\[\left[ \begin{array}{l}x = \alpha + k\pi \\x = \pi - \alpha + k\pi \end{array} \right.,\left( {k \in \mathbb{Z}} \right)\].
\[x = \alpha + k\pi ,\,\left( {k \in \mathbb{Z}} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

