Câu hỏi:

20/11/2025 47 Lưu

Trong các tập hợp sau, tập nào có đúng một tập hợp con ? 

A. \(\emptyset \);        
B. \(\left\{ 1 \right\}\); 
C. \(\left\{ {1;\,\,2;\,\,3} \right\}\);                                             
D. \(\left\{ {1;\,\,2} \right\}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Mọi tập hợp đều có hai tập con là chính nó và tập rỗng (\(\emptyset \)).

Riêng tập rỗng chỉ có một tập con là chính nó (chính là tập \(\emptyset \)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 1 nghiệm;               
B. 2 nghiệm;                    
C. 3 nghiệm;                       
D. 0 nghiệm.

Lời giải

Đáp án đúng là: D

Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 5x - 9} = \sqrt {3{x^2} - 2x + 3} \) ta được:

\(2{x^2} - 5x - 9 = 3{x^2} - 2x + 3 \Leftrightarrow {x^2} + 3x + 12 = 0 \Leftrightarrow x \in \emptyset \).

Vậy phương trình \(\sqrt {2{x^2} - 5x - 9} = \sqrt {3{x^2} - 2x + 3} \) vô nghiệm.

Lời giải

Ta mô phỏng bài toán như sau: (ảnh 1)

Vì M là trung điểm của BC nên \[\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\].

Suy ra \[AM = {\overrightarrow {AM} ^2} = \frac{1}{4}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{4}\left( {{{\overrightarrow {AB} }^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} + {{\overrightarrow {AC} }^2}} \right)\]

Lại có \[\overrightarrow {AB} \cdot \overrightarrow {AC} = \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\,\overrightarrow {AC} } \right) = c \cdot b.\cos A = bc \cdot \frac{{{c^2} + {b^2} - {a^2}}}{{2bc}} = \frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right)\]

Nên \[A{M^2} = \frac{1}{4}\left( {{c^2} + 2.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {b^2}} \right) = \frac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\].

Theo tính chất đường phân giác thì \[\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{c}{b}\].

Suy ra \[\overrightarrow {BD} = \frac{{BD}}{{DC}}\overrightarrow {DC} = \frac{b}{c}\overrightarrow {DC\,} \,\,\,\,\,\left( * \right)\]

Mặt khác \[\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \]\[\overrightarrow {DC} = \overrightarrow {AC} - \overrightarrow {AD} \] thay vào (*) ta được

\[\overrightarrow {AD} - \overrightarrow {AB} = \frac{b}{c}\left( {\overrightarrow {AC} - \overrightarrow {AD} } \right) \Leftrightarrow \left( {b + c} \right)\overrightarrow {AD} = b\overrightarrow {AB} + c\overrightarrow {AC} \]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {\left( {b\overrightarrow {AB} } \right)^2} + 2bc\overrightarrow {AB} \overrightarrow {AC} + {\left( {c\overrightarrow {AC} } \right)^2}\]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {b^2}{c^2} + 2bc.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {c^2}{b^2}\]

\[ \Leftrightarrow {\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\]

Vậy \[{\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\].

Câu 3

Cho \(\overrightarrow a \)\(\overrightarrow b \) là hai vectơ vuông góc với nhau. Mệnh đề nào sau đây đúng? 

A. \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\);                      
B. \(\overrightarrow a \cdot \overrightarrow b = 0\);                                   
C. \(\overrightarrow a \cdot \overrightarrow b = - 1\);                               
D. \(\overrightarrow a \cdot \overrightarrow b = - \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(2\overrightarrow {GM} \);                        
B. \(\frac{2}{3}\overrightarrow {GM} \);             
C. \( - \frac{2}{3}\overrightarrow {AM} \);               
D. \(\frac{1}{2}\overrightarrow {AM} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(S = \mathbb{R}\);                                       
B. \(S\backslash \left\{ 1 \right\}\);                        
C. \(S = \left( {2; + \infty } \right)\);
D. \(S = \left( { - \infty ;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Vectơ là một đường thẳng có hướng;
B. Vectơ là một đoạn thẳng;
C. Vectơ là một đoạn thẳng có hướng;
D. Vectơ là một đoạn thẳng không phân biệt điểm đầu và điểm cuối.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau?

Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau? (ảnh 1)

A. \(x + 2y > 1\);        

B. \(2x + y > 1\);            
C. \(2x + y < 1\);                               
D. \(2x - y > 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP