Hàm số bậc hai \(y = f\left( x \right)\) có đồ thị đi qua hai điểm \(A\left( {0;0} \right)\), \(B\left( { - 1;5} \right)\)và có trục đối xứng \(x = \frac{3}{4}\) có công thức là
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Hàm số bậc hai \(y = f\left( x \right)\) có dạng: \(y = f\left( x \right) = a{x^2} + bx + c\) với \(a \ne 0\).
Đồ thị đi qua điểm \(A\left( {0;0} \right)\) nên ta có: \(a{.0^2} + b.0 + c = 0 \Leftrightarrow c = 0\).
Đồ thị đi qua điểm \(B\left( { - 1;5} \right)\) nên ta có: \(a.{\left( { - 1} \right)^2} + b.\left( { - 1} \right) + c = 5 \Leftrightarrow a - b = 5\).
Đồ thị có trục đối xứng \(x = \frac{3}{4}\) nên ta có: \(\frac{{ - b}}{{2a}} = \frac{3}{4} \Rightarrow 6a + 4b = 0\).
Từ những điều trên, ta có hệ phương trình:
\(\left\{ \begin{array}{l}a - b = 5\\6a + 4b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 3\\a = 2\end{array} \right.\).
Như vậy, \(y = f\left( x \right) = 2{x^2} - 3x\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì M là trung điểm của BC nên \[\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\].
Suy ra \[AM = {\overrightarrow {AM} ^2} = \frac{1}{4}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{4}\left( {{{\overrightarrow {AB} }^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} + {{\overrightarrow {AC} }^2}} \right)\]
Lại có \[\overrightarrow {AB} \cdot \overrightarrow {AC} = \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\,\overrightarrow {AC} } \right) = c \cdot b.\cos A = bc \cdot \frac{{{c^2} + {b^2} - {a^2}}}{{2bc}} = \frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right)\]
Nên \[A{M^2} = \frac{1}{4}\left( {{c^2} + 2.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {b^2}} \right) = \frac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\].
Theo tính chất đường phân giác thì \[\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{c}{b}\].
Suy ra \[\overrightarrow {BD} = \frac{{BD}}{{DC}}\overrightarrow {DC} = \frac{b}{c}\overrightarrow {DC\,} \,\,\,\,\,\left( * \right)\]
Mặt khác \[\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \] và \[\overrightarrow {DC} = \overrightarrow {AC} - \overrightarrow {AD} \] thay vào (*) ta được
\[\overrightarrow {AD} - \overrightarrow {AB} = \frac{b}{c}\left( {\overrightarrow {AC} - \overrightarrow {AD} } \right) \Leftrightarrow \left( {b + c} \right)\overrightarrow {AD} = b\overrightarrow {AB} + c\overrightarrow {AC} \]
\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {\left( {b\overrightarrow {AB} } \right)^2} + 2bc\overrightarrow {AB} \overrightarrow {AC} + {\left( {c\overrightarrow {AC} } \right)^2}\]
\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {b^2}{c^2} + 2bc.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {c^2}{b^2}\]
\[ \Leftrightarrow {\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\]
Vậy \[{\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\].
Lời giải
Ta mô phỏng bài toán như sau:

Vì tam giác \(AHB\) vuông tại \(H\), theo định lí Pythagore ta có:
\(A{B^2} = A{H^2} + H{B^2} = {5^2} + {25^2} = 650\)
Suy ra \(AB = 5\sqrt {26} \).
Lại có: \(\cos \widehat {HAB} = \frac{{AH}}{{AB}} = \frac{5}{{5\sqrt {26} }} = \frac{1}{{\sqrt {26} }}\), suy ra \(\widehat {HAB} \approx 79^\circ \).
Ta có: \(\widehat {HAC} = \widehat {HAB} + \widehat {BAC} = 79^\circ + 45^\circ = 124^\circ \).
Tứ giác \(AHBC\) có: \(\widehat H + \widehat {HAC} + \widehat {ACB} + \widehat {HBC} = 360^\circ \).
Suy ra \(\widehat {ACB} = 360^\circ - \left( {\widehat H + \widehat {HAC} + \widehat {HBC}} \right) = 360^\circ - \left( {90^\circ + 124^\circ + 90^\circ } \right) = 56^\circ \).
Áp dụng định lí sin trong tam giác \(ABC\) ta có:
\(\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow BC = \frac{{AB\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{5\sqrt {26} \cdot \sin 45^\circ }}{{\sin 56^\circ }} \approx 21,75\).
Vậy chiều cao \(BC\) của cây xấp xỉ 21,75 m.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

