Cho \(\Delta ABC\) có \(AB = 6;\,BC = 8;\,\widehat B = 60^\circ \). Tính độ dài cạnh \(AC\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot BC \cdot \cos B = {6^2} + {8^2} - 2 \cdot 6 \cdot 8 \cdot \cos 60^\circ = 52\).
Suy ra\(AC = 2\sqrt {13} \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Vì \(\overrightarrow a \) và \(\overrightarrow b \) là hai vectơ vuông góc với nhau nên \(\left( {\overrightarrow a ,\,\,\overrightarrow b } \right) = 90^\circ \).
Do đó, \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\,\overrightarrow b } \right) = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos 90^\circ = 0\).
Câu 2
Lời giải
Đáp án đúng là: C
Vì \(G\) là trọng tâm của tam giác \(ABC\) nên ta có \(AG = \frac{2}{3}AM,\,AG = 2GM\).
Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) ngược hướng nên \(\overrightarrow {GA} = - 2\overrightarrow {GM} \). Vậy đáp án A và B đều sai.
Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {AM} \) ngược hướng nên \(\overrightarrow {GA} = - \frac{2}{3}\overrightarrow {AM} \). Vậy đáp án C đúng và đáp án D sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.