Câu hỏi:

20/11/2025 56 Lưu

Cho hình bình hành \(ABCD\), với giao điểm hai đường chéo là \(I\). Khi đó:

A. \(\overrightarrow {AB} + \overrightarrow {IA} = \overrightarrow {BI} \);                                    
B. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {BD} \);                                   
C. \(\overrightarrow {AB} + \overrightarrow {CD} = \vec 0\);                               
D. \(\overrightarrow {AB} + \overrightarrow {BD} = \vec 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Đáp án đúng là: B (ảnh 1)

Theo tính chất giao hoán và quy tắc ba điểm, ta có: \(\overrightarrow {AB} + \overrightarrow {IA} = \overrightarrow {IA} + \overrightarrow {AB} = \overrightarrow {IB} \ne \overrightarrow {BI} \) nên đáp án A sai.

Áp dụng quy tắc hình bình hành đối với hình bình hành \(ABCD\), ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \ne \overrightarrow {BD} \) nên đáp án B sai.

\(ABCD\) là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \). Ta có: \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {DC} + \overrightarrow {CD} = \overrightarrow {DD} = \vec 0\), do đó đáp án C đúng.

Theo quy tắc ba điểm, ta có: \[\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} \ne \overrightarrow 0 \] nên đáp án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 1 nghiệm;               
B. 2 nghiệm;                    
C. 3 nghiệm;                       
D. 0 nghiệm.

Lời giải

Đáp án đúng là: D

Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 5x - 9} = \sqrt {3{x^2} - 2x + 3} \) ta được:

\(2{x^2} - 5x - 9 = 3{x^2} - 2x + 3 \Leftrightarrow {x^2} + 3x + 12 = 0 \Leftrightarrow x \in \emptyset \).

Vậy phương trình \(\sqrt {2{x^2} - 5x - 9} = \sqrt {3{x^2} - 2x + 3} \) vô nghiệm.

Lời giải

Ta mô phỏng bài toán như sau: (ảnh 1)

Vì M là trung điểm của BC nên \[\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\].

Suy ra \[AM = {\overrightarrow {AM} ^2} = \frac{1}{4}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{4}\left( {{{\overrightarrow {AB} }^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} + {{\overrightarrow {AC} }^2}} \right)\]

Lại có \[\overrightarrow {AB} \cdot \overrightarrow {AC} = \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\,\overrightarrow {AC} } \right) = c \cdot b.\cos A = bc \cdot \frac{{{c^2} + {b^2} - {a^2}}}{{2bc}} = \frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right)\]

Nên \[A{M^2} = \frac{1}{4}\left( {{c^2} + 2.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {b^2}} \right) = \frac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\].

Theo tính chất đường phân giác thì \[\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{c}{b}\].

Suy ra \[\overrightarrow {BD} = \frac{{BD}}{{DC}}\overrightarrow {DC} = \frac{b}{c}\overrightarrow {DC\,} \,\,\,\,\,\left( * \right)\]

Mặt khác \[\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \]\[\overrightarrow {DC} = \overrightarrow {AC} - \overrightarrow {AD} \] thay vào (*) ta được

\[\overrightarrow {AD} - \overrightarrow {AB} = \frac{b}{c}\left( {\overrightarrow {AC} - \overrightarrow {AD} } \right) \Leftrightarrow \left( {b + c} \right)\overrightarrow {AD} = b\overrightarrow {AB} + c\overrightarrow {AC} \]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {\left( {b\overrightarrow {AB} } \right)^2} + 2bc\overrightarrow {AB} \overrightarrow {AC} + {\left( {c\overrightarrow {AC} } \right)^2}\]

\[ \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {b^2}{c^2} + 2bc.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {c^2}{b^2}\]

\[ \Leftrightarrow {\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\]

Vậy \[{\overrightarrow {AD} ^2} = \frac{{bc}}{{{{\left( {b + c} \right)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\].

Câu 3

Cho \(\overrightarrow a \)\(\overrightarrow b \) là hai vectơ vuông góc với nhau. Mệnh đề nào sau đây đúng? 

A. \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\);                      
B. \(\overrightarrow a \cdot \overrightarrow b = 0\);                                   
C. \(\overrightarrow a \cdot \overrightarrow b = - 1\);                               
D. \(\overrightarrow a \cdot \overrightarrow b = - \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(2\overrightarrow {GM} \);                        
B. \(\frac{2}{3}\overrightarrow {GM} \);             
C. \( - \frac{2}{3}\overrightarrow {AM} \);               
D. \(\frac{1}{2}\overrightarrow {AM} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(S = \mathbb{R}\);                                       
B. \(S\backslash \left\{ 1 \right\}\);                        
C. \(S = \left( {2; + \infty } \right)\);
D. \(S = \left( { - \infty ;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Vectơ là một đường thẳng có hướng;
B. Vectơ là một đoạn thẳng;
C. Vectơ là một đoạn thẳng có hướng;
D. Vectơ là một đoạn thẳng không phân biệt điểm đầu và điểm cuối.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau?

Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau? (ảnh 1)

A. \(x + 2y > 1\);        

B. \(2x + y > 1\);            
C. \(2x + y < 1\);                               
D. \(2x - y > 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP