Câu hỏi:

20/11/2025 76 Lưu

Cho tam giác \(ABC\)\(AB = 1\), \(BC = 2\)\(\widehat {ABC} = 60^\circ \). Tích vô hướng \(\overrightarrow {BC} \cdot \overrightarrow {CA} \) bằng

A. \(\sqrt 3 \);              
B. \( - \sqrt 3 \);              
C. \(3\);                            
D. \( - 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Áp dụng định lí côsin trong tam giác \(ABC\) ta có:

\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot BC \cdot \cos \widehat {ABC} = {1^2} + {2^2} - 2 \cdot 1 \cdot 2 \cdot \cos 60^\circ = 3\).

Suy ra \(AC = \sqrt 3 \).

Theo hệ quả của định lí côsin ta có:

\(\cos \widehat {ACB} = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2 \cdot AC \cdot BC}} = \frac{{{{\left( {\sqrt 3 } \right)}^2} + {2^2} - {1^2}}}{{2 \cdot \sqrt 3 \cdot 2}} = \frac{{\sqrt 3 }}{2}\).

Ta có: \(\overrightarrow {BC} \cdot \overrightarrow {CA} = - \overrightarrow {CB} \cdot \overrightarrow {CA} = - \left( {\left| {\overrightarrow {CB} } \right| \cdot \left| {\overrightarrow {CA} } \right| \cdot \cos \widehat {ACB}} \right) = - \left( {2 \cdot \sqrt 3 .\frac{{\sqrt 3 }}{2}} \right) = - 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho \(\overrightarrow a \)\(\overrightarrow b \) là hai vectơ vuông góc với nhau. Mệnh đề nào sau đây đúng? 

A. \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\);                      
B. \(\overrightarrow a \cdot \overrightarrow b = 0\);                                   
C. \(\overrightarrow a \cdot \overrightarrow b = - 1\);                               
D. \(\overrightarrow a \cdot \overrightarrow b = - \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|\).

Lời giải

Đáp án đúng là: B

\(\overrightarrow a \)\(\overrightarrow b \) là hai vectơ vuông góc với nhau nên \(\left( {\overrightarrow a ,\,\,\overrightarrow b } \right) = 90^\circ \).

Do đó, \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\,\overrightarrow b } \right) = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos 90^\circ = 0\).

Câu 2

A. \(2\overrightarrow {GM} \);                        
B. \(\frac{2}{3}\overrightarrow {GM} \);             
C. \( - \frac{2}{3}\overrightarrow {AM} \);               
D. \(\frac{1}{2}\overrightarrow {AM} \).

Lời giải

Đáp án đúng là: C

\(G\) là trọng tâm của tam giác \(ABC\) nên ta có \(AG = \frac{2}{3}AM,\,AG = 2GM\).

Hai vectơ \(\overrightarrow {GA} \)\(\overrightarrow {GM} \) ngược hướng nên \(\overrightarrow {GA} = - 2\overrightarrow {GM} \). Vậy đáp án A và B đều sai.

Hai vectơ \(\overrightarrow {GA} \)\(\overrightarrow {AM} \) ngược hướng nên \(\overrightarrow {GA} = - \frac{2}{3}\overrightarrow {AM} \). Vậy đáp án C đúng và đáp án D sai.

Câu 3

A. \(S = \mathbb{R}\);                                       
B. \(S\backslash \left\{ 1 \right\}\);                        
C. \(S = \left( {2; + \infty } \right)\);
D. \(S = \left( { - \infty ;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 1 nghiệm;               
B. 2 nghiệm;                    
C. 3 nghiệm;                       
D. 0 nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2{x^2} - 5x - 1 > 0\);                                    
B. \({x^2} + 3x - 5 > 0\)
C. \(2{x^2} + 3x + 4 < 0\);                                  
D. \(3{x^2} - 3x - 1 < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP