Câu hỏi:

21/11/2025 30 Lưu

I. Trắc nghiệm (7 điểm)

Cho hai mệnh đề

\(P\): “\(n\) là số tự nhiên chẵn”, \(Q\): “\(n\) chia hết cho 2”.

Mệnh đề \(P \Rightarrow Q\) được phát biểu là

A. “Nếu \(n\) chia hết cho 2 thì \(n\) là số tự nhiên chẵn”;
B. “Nếu \(n\) là số tự nhiên chẵn thì \(n\) chia hết cho 2”;
C. “\(n\) là số tự nhiên chẵn chia hết cho 2”;
D. “\(n\) là số tự nhiên thì \(n\) chẵn và chia hết cho 2”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Mệnh đề \(P \Rightarrow Q\) được phát biểu: “Nếu \(P\) thì \(Q\)”.

Vậy với \(P\): “\(n\) là số tự nhiên chẵn”, \(Q\): “\(n\) chia hết cho 2”, ta có mệnh đề \(P \Rightarrow Q\) được phát biểu là “Nếu \(n\) là số tự nhiên chẵn thì \(n\) chia hết cho 2”.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta phân tích được: \[\overrightarrow {AL} = \frac{b}{{b + c}}\overrightarrow {AB} + \frac{c}{{b + c}}\overrightarrow {AC} \]

\[\overrightarrow {CM} = \frac{{\overrightarrow {CA} + \overrightarrow {CB} }}{2} = \frac{{\overrightarrow {AB} - 2\overrightarrow {AC} }}{2}\]

Theo giả thiết: \[AL \bot CM \Leftrightarrow \overrightarrow {AL} .\overrightarrow {CM} = 0\]

\[ \Leftrightarrow \left( {b\overrightarrow {AB} + c\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 2\overrightarrow {AC} } \right) = 0\]

\[ \Leftrightarrow b{c^2} + b{c^2}\cos A - 2c{b^2}\cos A - 2c{b^2} = 0\]

\[ \Leftrightarrow \left( {c - 2b} \right)\left( {1 + \cos A} \right) = 0 \Rightarrow c = 2b\,\,\left( {do\,\,\cos A > - 1} \right)\]

Khi đó: \[C{M^2} = \frac{{{b^2} + {a^2}}}{2} - \frac{{{c^2}}}{4} = \frac{{{a^2} - {b^2}}}{2}\]

\[A{L^2} = \frac{1}{9}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{9}\left( {A{B^2} + A{C^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} } \right) = \frac{2}{9}\left( {9{b^2} - {a^2}} \right)\]

\[\frac{{CM}}{{AL}} = \frac{{\sqrt 3 }}{2} \Leftrightarrow \frac{{C{M^2}}}{{A{L^2}}} = \frac{9}{4}.\frac{{{a^2} - {b^2}}}{{9{b^2} - {a^2}}} = \frac{3}{4} \Leftrightarrow {a^2} = 3{b^2}\]

Do đó, \[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{b^2} + {{\left( {2b} \right)}^2} - 3{b^2}}}{{2b \cdot 2b}} = \frac{1}{2}\].

Câu 2

A. 2;                                
B. 4;                            
C. 12;                                   
D. 20.

Lời giải

Đáp án đúng là: A

Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \), suy ra \(\cos A = - \cos \left( {B + C} \right) = - \left( { - \frac{{\sqrt 2 }}{2}} \right) = \frac{{\sqrt 2 }}{2}\) (hai góc bù nhau).

Theo định lí côsin trong tam giác \(ABC\), ta có:

\(B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos A = {2^2} + {\left( {2\sqrt 2 } \right)^2} - 2 \cdot 2 \cdot 2\sqrt 2 .\frac{{\sqrt 2 }}{2} = 4\).

Suy ra \(BC = 2\).

Câu 3

A. \({a^2} = {b^2} + {c^2} - 2bc \cdot \cos A\);     
B. \({a^2} = {b^2} + {c^2}\);                         
C. \({b^2} = {c^2} + {a^2} - 2ca \cdot \cos B\);                                  
D. \({c^2} = {b^2} + {a^2} - 2ba \cdot \cos C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(O\left( {0;\,\,0} \right)\);                             
B. \[M\left( {1;\,\,1} \right)\];        
C. \[N\left( { - 1;\,\,1} \right)\];                      
D. \[P\left( { - 1;\,\, - 1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hai vectơ cùng hướng thì cùng phương;
B. Hai vectơ cùng phương thì cùng hướng;
C. Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối;
D. Vectơ là đoạn thẳng có hướng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP