Câu hỏi:

21/11/2025 55 Lưu

(1 điểm) Một người đi dọc bờ biển từ vị trí \(A\) đến vị trí \(B\) và quan sát một ngọn hải đăng. Góc nghiêng của phương quan sát từ vị trí \(A,\,\,B\) tới ngọn hải đăng với đường đi của người quan sát là \(50^\circ \)\(70^\circ \). Biết khoảng cách giữa hai vị trí \(A\)\(B\) là 20 m. Ngọn hải đăng cách bờ biển bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Một người đi dọc bờ biển từ vị trí \( (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(C\) là vị trí ngọn hải đăng, từ \(C\) kẻ \(CH\) vuông góc với đường thẳng \(AB\) tại \(H\). Khi đó \(CH\) là khoảng cách từ ngọn hải đăng tới bờ biển. Ta mô phỏng bài toán như hình vẽ sau:

Một người đi dọc bờ biển từ vị trí \( (ảnh 2)

\(\widehat {CBH}\) là góc ngoài tại đỉnh \(B\) của tam giác \(ABC\) nên \(\widehat {CBH} = \widehat {CAB} + \widehat {ACB}\).

Suy ra \(\widehat {ACB} = \widehat {CBH} - \widehat {CAB} = 70^\circ - 50^\circ = 20^\circ \).

Áp dụng định lí sin trong tam giác \(ABC\) ta có:

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {CAB}}}\)\( \Rightarrow BC = \frac{{AB\sin \widehat {CAB}}}{{\sin \widehat {ACB}}} = \frac{{20 \cdot \sin 50^\circ }}{{\sin 20^\circ }} \approx 44,8\).

Tam giác \(CBH\) vuông tại \(H\) nên ta có:

\(CH = BC\sin \widehat {CBH} = 44,8 \cdot \sin 70^\circ \approx 42,1\).

Vậy ngọn hải đăng cách bờ biển khoảng 42,1 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta phân tích được: \[\overrightarrow {AL} = \frac{b}{{b + c}}\overrightarrow {AB} + \frac{c}{{b + c}}\overrightarrow {AC} \]

\[\overrightarrow {CM} = \frac{{\overrightarrow {CA} + \overrightarrow {CB} }}{2} = \frac{{\overrightarrow {AB} - 2\overrightarrow {AC} }}{2}\]

Theo giả thiết: \[AL \bot CM \Leftrightarrow \overrightarrow {AL} .\overrightarrow {CM} = 0\]

\[ \Leftrightarrow \left( {b\overrightarrow {AB} + c\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 2\overrightarrow {AC} } \right) = 0\]

\[ \Leftrightarrow b{c^2} + b{c^2}\cos A - 2c{b^2}\cos A - 2c{b^2} = 0\]

\[ \Leftrightarrow \left( {c - 2b} \right)\left( {1 + \cos A} \right) = 0 \Rightarrow c = 2b\,\,\left( {do\,\,\cos A > - 1} \right)\]

Khi đó: \[C{M^2} = \frac{{{b^2} + {a^2}}}{2} - \frac{{{c^2}}}{4} = \frac{{{a^2} - {b^2}}}{2}\]

\[A{L^2} = \frac{1}{9}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{9}\left( {A{B^2} + A{C^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} } \right) = \frac{2}{9}\left( {9{b^2} - {a^2}} \right)\]

\[\frac{{CM}}{{AL}} = \frac{{\sqrt 3 }}{2} \Leftrightarrow \frac{{C{M^2}}}{{A{L^2}}} = \frac{9}{4}.\frac{{{a^2} - {b^2}}}{{9{b^2} - {a^2}}} = \frac{3}{4} \Leftrightarrow {a^2} = 3{b^2}\]

Do đó, \[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{b^2} + {{\left( {2b} \right)}^2} - 3{b^2}}}{{2b \cdot 2b}} = \frac{1}{2}\].

Câu 2

A. 2;                                
B. 4;                            
C. 12;                                   
D. 20.

Lời giải

Đáp án đúng là: A

Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \), suy ra \(\cos A = - \cos \left( {B + C} \right) = - \left( { - \frac{{\sqrt 2 }}{2}} \right) = \frac{{\sqrt 2 }}{2}\) (hai góc bù nhau).

Theo định lí côsin trong tam giác \(ABC\), ta có:

\(B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos A = {2^2} + {\left( {2\sqrt 2 } \right)^2} - 2 \cdot 2 \cdot 2\sqrt 2 .\frac{{\sqrt 2 }}{2} = 4\).

Suy ra \(BC = 2\).

Câu 3

A. \({a^2} = {b^2} + {c^2} - 2bc \cdot \cos A\);     
B. \({a^2} = {b^2} + {c^2}\);                         
C. \({b^2} = {c^2} + {a^2} - 2ca \cdot \cos B\);                                  
D. \({c^2} = {b^2} + {a^2} - 2ba \cdot \cos C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(O\left( {0;\,\,0} \right)\);                             
B. \[M\left( {1;\,\,1} \right)\];        
C. \[N\left( { - 1;\,\,1} \right)\];                      
D. \[P\left( { - 1;\,\, - 1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hai vectơ cùng hướng thì cùng phương;
B. Hai vectơ cùng phương thì cùng hướng;
C. Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối;
D. Vectơ là đoạn thẳng có hướng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP