Tam giác \(ABC\) có \(AB = 3\,cm\), \(BC = 4\,cm\), \(\widehat {ABC} = 60^\circ \). Độ dài cạnh \(AC\) bằng
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét tam giác \(ABC\)
Áp dụng định lí côsin ta có:
\(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\)
Thay số \(AB = 3\,cm\), \(BC = 4\,cm\), \(\widehat {ABC} = 60^\circ \) ta có:
\(A{C^2} = {3^2} + {4^2} - 2.3.4.\cos 60^\circ = 13\)
Do \(AC\) > 0 nên \(AC = \sqrt {13} \)cm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận của công ty trong một tháng khi bán hết \(q\) sản phẩm là:
\(L\left( q \right) = q.R\left( q \right) - C\left( q \right) = q\left( {120 - 2q} \right) - \left( {4{q^2} + 36q - 1\,\,234} \right)\)\( = - 6{q^2} + 84q + 1\,234\).
Để lợi nhuận công ty thu về là cao nhất, tức cần tìm \(q\) để \(L\left( q \right)\) đạt giá trị lớn nhất.
Lại có \(L\left( q \right) = - 6{q^2} + 84q + 1\,234\) là hàm số bậc hai có hệ số \(a = - 6 < 0\), nên nó đạt giá trị lớn nhất tại đỉnh.
Ta có: \(q = - \frac{b}{{2a}} = - \frac{{84}}{{2.\left( { - 6} \right)}} = 7\). Do đó, \(L\left( q \right)\)đạt giá trị lớn nhất tại \(q = 7\).
Vậy công ty A cần sản xuất 7 sản phẩm trong một tháng để thu về lợi nhuận cao nhất.
Lời giải

Kí hiệu như hình vẽ trên.
Sau 2 giờ, tàu \(B\) chạy được 48 hải lí, tàu \(C\) chạy được 36 hải lí.
Hay \(AB = 48\) hải lí, \(AC = 36\) hải lí.
Xét tam giác \(ABC\), áp dụng định lí côsin ta có:
\(B{C^2} = A{C^2} + A{B^2} - 2AC \cdot AB \cdot \cos \widehat {BAC}\)
\( = {36^2} + {48^2} - 2 \cdot 36 \cdot 48 \cdot \cos 45^\circ \approx 1156,24\)
Do \(BC > 0\) nên \(BC = \sqrt {1156,24} \approx 34\) hải lí.
Vậy sau hai giờ, hai tàu cách nhau khoảng 34 hải lí.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

