Câu hỏi:

21/11/2025 111 Lưu

II. Tự luận (3 điểm)

(1 điểm). Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ \(Oth\), trong đó \(t\) là thời gian, kể từ khi quả bóng được đá lên, \(h\) là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2 m. Sau đó 1 giây, nó đạt độ cao 8,5 m và 2 giây sau khi đá lên, nó ở độ cao 6 m. Hãy tìm hàm số bậc hai biểu thị độ cao \(h\) theo thời gian \(t\) và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tại \(t = 0\), ta có: \(y = h = 1,2\); tại \(t = 1\), ta có\(h = 8,5\); tại \(t = 2\), ta có \(y = h = 6\).

Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth (ảnh 1)

Chọn hệ trục tọa độ \(Oth\) như hình vẽ.

Parabol \(\left( P \right)\) có phương trình: \(y = a{t^2} + bt + c\), với \(a \ne 0\).

Theo bài ra ta có: \(A\left( {0;\,\,1,2} \right) \in \left( P \right),\,\,B\left( {1;\,\,8,5} \right) \in \left( P \right),\,\,C\left( {2;\,\,6} \right) \in \left( P \right)\).

Vậy ta có hệ phương trình: \(\left\{ \begin{array}{l}c = 1,2\\a + b + c = 8,5\\4a + 2b + c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1,2\\a = - 4,9\\b = 12,2\end{array} \right.\).

Vậy hàm số cần tìm có dạng: \(y = - 4,9{t^2} + 12,2t + 1,2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 18;                          
B. \(9\sqrt 3 \);                
C. \(9\sqrt 5 \);      
D. 45.

Lời giải

Đáp án đúng là: A

Đáp án đúng là: C (ảnh 1)

\(E\) là điểm đối xứng của \(D\) qua \(C\) nên \(C\) là trung điểm của \(DE\), do đó \(DE = 2DC = 2 \cdot 3 = 6\).

Ta có: \(\overrightarrow {AE} \cdot \overrightarrow {AB} = \left( {\overrightarrow {AD} + \overrightarrow {DE} } \right) \cdot \overrightarrow {AB} = \overrightarrow {AD} \cdot \overrightarrow {AB} + \overrightarrow {DE} \cdot \overrightarrow {AB} \)

Do \(AB \bot AD\) nên \(\overrightarrow {AD} \cdot \overrightarrow {AB} = 0\).

Hai vectơ \(\overrightarrow {AB} \)\(\overrightarrow {DE} \) cùng hướng nên \(\cos \left( {\overrightarrow {AB} ,\,\,\overrightarrow {DE} } \right) = 0^\circ \).

Do đó, DEAB=DEABcosAB,DE=DEABcos0°=631=18

Vậy \(\overrightarrow {AE} \cdot \overrightarrow {AB} = 0 + 18 = 18\).

Câu 2

A. \[\left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = \frac{{5\sqrt 3 }}{2}\];                                         
B. \[\left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = 5\];               
C. \[\left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = \frac{{5\sqrt 7 }}{4}\];                                                                 
D. \[\left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = \frac{{5\sqrt 7 }}{2}\].

Lời giải

Đáp án đúng là: D

Đáp án đúng là: D (ảnh 1)

Ta có: \[\left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = \left| {2\overrightarrow {CE} } \right| = 2CE\] (với \[E\] là trung điểm của \[AH\]).

Ta lại có: \[AH = \frac{{5\sqrt 3 }}{2}\] (\[\Delta ABC\] đều, \[AH\] là đường cao), suy ra \(HE = \frac{1}{2}AH = \frac{{5\sqrt 3 }}{4}\).

\(CH = \frac{1}{2}BC = \frac{5}{2}\).

Trong tam giác \[HEC\] vuông tại \[H\], từ định lí Pythagore suy ra

\[EC = \sqrt {C{H^2} + H{E^2}} = \sqrt {{{\left( {\frac{5}{2}} \right)}^2} + {{\left( {\frac{{5\sqrt 3 }}{4}} \right)}^2}} = \frac{{5\sqrt 7 }}{4}\]

\[ \Rightarrow \left| {\overrightarrow {CA} - \overrightarrow {HC} } \right| = 2CE = \frac{{5\sqrt 7 }}{2}\].

Câu 3

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( { - \infty ;\,\, + \infty } \right)\) có đồ thị như hình vẽ dưới đây.

Đáp án đúng là: D (ảnh 1)

Mệnh đề nào sau đây đúng?

A. Hàm số đồng biến trên khoảng \(\left( {0;\,\,2} \right)\);                                                                             
B. Hàm số đồng biến trên khoảng \(\left( { - 1;\,\,0} \right)\)
C. Hàm số nghịch biến trên khoảng \(\left( { - 3;\,\,0} \right)\);    
D. Hàm số nghịch biến trên khoảng \(\left( {0;\,\,3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình bình hành \(ABCD\). Gọi \(M,\,N\) lần lượt là trung điểm của \(BC\)\(CD\). Đặt \(\overrightarrow a = \overrightarrow {AM} ,\overrightarrow b = \overrightarrow {AN} \). Hãy biểu diễn vectơ \(\overrightarrow {AC} \) theo \(\overrightarrow a \)\(\overrightarrow b \).

A. \(\overrightarrow {AC} = \frac{1}{3}\overrightarrow a + \frac{2}{3}\overrightarrow b \);                    
B. \(\overrightarrow {AC} = \frac{2}{3}\overrightarrow a + \frac{2}{3}\overrightarrow b \);                       
C. \(\overrightarrow {AC} = \frac{2}{3}\overrightarrow a + 4\overrightarrow b \);                                    
D. \(\overrightarrow {AC} = \overrightarrow a + 3\overrightarrow b \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau:

Đáp án đúng là: C (ảnh 1)

Phương trình của parabol này là

 

A. \(y = {x^2} - 2x - 1\);                                      
B. \(y = {x^2} + 2x - 2\);                    
C. \(y = 2{x^2} - 4x - 2\);                               
D.\(y = {x^2} + 2x - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP