II. Tự luận (3 điểm)
(1 điểm). Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ \(Oth\), trong đó \(t\) là thời gian, kể từ khi quả bóng được đá lên, \(h\) là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2 m. Sau đó 1 giây, nó đạt độ cao 8,5 m và 2 giây sau khi đá lên, nó ở độ cao 6 m. Hãy tìm hàm số bậc hai biểu thị độ cao \(h\) theo thời gian \(t\) và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.
II. Tự luận (3 điểm)
(1 điểm). Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ \(Oth\), trong đó \(t\) là thời gian, kể từ khi quả bóng được đá lên, \(h\) là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2 m. Sau đó 1 giây, nó đạt độ cao 8,5 m và 2 giây sau khi đá lên, nó ở độ cao 6 m. Hãy tìm hàm số bậc hai biểu thị độ cao \(h\) theo thời gian \(t\) và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Tại \(t = 0\), ta có: \(y = h = 1,2\); tại \(t = 1\), ta có\(h = 8,5\); tại \(t = 2\), ta có \(y = h = 6\).

Chọn hệ trục tọa độ \(Oth\) như hình vẽ.
Parabol \(\left( P \right)\) có phương trình: \(y = a{t^2} + bt + c\), với \(a \ne 0\).
Theo bài ra ta có: \(A\left( {0;\,\,1,2} \right) \in \left( P \right),\,\,B\left( {1;\,\,8,5} \right) \in \left( P \right),\,\,C\left( {2;\,\,6} \right) \in \left( P \right)\).
Vậy ta có hệ phương trình: \(\left\{ \begin{array}{l}c = 1,2\\a + b + c = 8,5\\4a + 2b + c = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1,2\\a = - 4,9\\b = 12,2\end{array} \right.\).
Vậy hàm số cần tìm có dạng: \(y = - 4,9{t^2} + 12,2t + 1,2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A

Vì \(E\) là điểm đối xứng của \(D\) qua \(C\) nên \(C\) là trung điểm của \(DE\), do đó \(DE = 2DC = 2 \cdot 3 = 6\).
Ta có: \(\overrightarrow {AE} \cdot \overrightarrow {AB} = \left( {\overrightarrow {AD} + \overrightarrow {DE} } \right) \cdot \overrightarrow {AB} = \overrightarrow {AD} \cdot \overrightarrow {AB} + \overrightarrow {DE} \cdot \overrightarrow {AB} \)
Do \(AB \bot AD\) nên \(\overrightarrow {AD} \cdot \overrightarrow {AB} = 0\).
Hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {DE} \) cùng hướng nên \(\cos \left( {\overrightarrow {AB} ,\,\,\overrightarrow {DE} } \right) = 0^\circ \).
Do đó,
Vậy \(\overrightarrow {AE} \cdot \overrightarrow {AB} = 0 + 18 = 18\).
Lời giải
Gọi \(O,\,\,A,\,\,B\) lần lượt là vị trí sân bay và hai máy bay sau 2 tiếng.
Hướng \({\rm{N25^\circ E}}\) là hướng tạo với hướng bắc một góc \(25^\circ \) và tạo với hướng đông một góc \(90^\circ - 25^\circ = 65^\circ \). Ta mô phỏng bài toán đã cho như sau:

Quãng đường máy bay bay theo hướng đông sau 2 tiếng là
\(OA = 540 \cdot 2 = 1\,\,080\) (km).
Quãng đường máy bay bay theo hướng \({\rm{N25^\circ E}}\) sau 2 tiếng là
\(OB = 670 \cdot 2 = 1\,\,340\) (km).
Ta có: \(\widehat {AOB} = 65^\circ \), \(OA = 1\,\,080,\,\,OB = 1\,\,340\).
Áp dụng định lí côsin trong tam giác \(OAB\), ta có:
\(A{B^2} = O{A^2} + O{B^2} - 2 \cdot OA \cdot OB \cdot \cos \widehat {AOB}\)
\( = 1\,\,{080^2} + 1\,\,{340^2} - 2 \cdot 1\,\,080 \cdot \,1\,\,340 \cdot \cos 65^\circ \approx 1\,\,738\,\,774\).
Suy ra \(AB \approx \sqrt {1\,\,738\,\,774} \approx 1\,\,319\) (km).
Vậy sau 2 tiếng, hai máy bay cách nhau khoảng 1 319 km.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

