Câu hỏi:

06/12/2025 24 Lưu

Cho hình hộp chữ nhật có các kích thước như hình vẽ.

Cho hình hộp chữ nhật có các kích thước như hình vẽ.  Thể tích hình chóp tam giác đều O.A'B'C'D'  là (ảnh 1)

 Thể tích hình chóp tam giác đều \(O.A'B'C'D'\)  

A. \({\rm{42}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\).                       
B. \({\rm{42}}\sqrt {\rm{3}} \;{\rm{c}}{{\rm{m}}^{\rm{3}}}\).                 
C. \({\rm{84}}\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\).                       
D. \({\rm{84}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C

Diện tích đáy của hình lăng trụ là: \(S = {6^2} = 36\;\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Thể tích hình lăng trụ là \(V = S \cdot h = 36 \cdot 7 = 252\;\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Khi đó, thể tích khối chóp \(O.A'B'C'D'\) :

\({V_{O.A'B'C'D'}} = \frac{1}{3}S \cdot h = \frac{1}{3}V = \frac{1}{3} \cdot 252 = 84\;\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Vậy thể tích khối chóp \(O.A'B'C'D'\) \(84\;{\rm{c}}{{\rm{m}}^{\rm{3}}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \[{x^3} - 3{x^2} + 3x - 126 = 0\]

\[{x^3} - 3{x^2} + 3x - 1 - 125 = 0\]

\[{\left( {x - 1} \right)^3} = 125\]

\[{\left( {x - 1} \right)^3} = {5^3}\]

Suy ra \(x - 1 = 5\)

\(x = 6\)

Vậy \(x = 6.\)

b) \({x^{16}} + 2{x^8} - {x^8} = 2\)

\({x^{16}} + 2{x^8} - {x^8} - 2 = 0\)

\[\left( {{x^{16}} + 2{x^8}} \right) - \left( {{x^8} + 2} \right) = 0\]

\[{x^8}\left( {{x^8} + 2} \right) - \left( {{x^8} + 2} \right) = 0\]

\[\left( {{x^8} + 2} \right)\left( {{x^8} - 1} \right) = 0\]

\[\left( {{x^8} + 2} \right)\left( {{x^4} + 1} \right)\left( {{x^4} - 1} \right) = 0\]

\[\left( {{x^8} + 2} \right)\left( {{x^4} + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right) = 0\]

\[\left( {{x^8} + 2} \right)\left( {{x^4} + 1} \right)\left( {{x^2} + 1} \right)\left( {x + 1} \right)\left( {x - 1} \right) = 0\]

Suy ra \(x + 1 = 0\) hoặc \(x - 1 = 0\)

(Vì \[{x^8} + 2 > 0,{x^4} + 1 > 0,{x^2} + 1 > 0\] với mọi \(x)\)

Do đó \(x = - 1\) hoặc \(x = 1.\)

Vậy \[x \in \left\{ { - 1\,;\,\,1} \right\}.\]

Câu 2

A. Hình vuông.        
B. Tam giác đều.     
C. Hình chữ nhật.       
D. Hình thoi.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

Hình chóp tứ giác đều có mặt đáy là hình vuông.

Câu 5

A. \(\frac{1}{2}{x^2} - \frac{1}{2}x + 1\).   
B. \(\frac{1}{4}{x^2} - 1\).                     
C. \(\frac{1}{4}{x^2} - \frac{1}{2}x + 1\).         
D. \(\frac{1}{4}{x^2} - x + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{2{S_{xq}}}}{{3a}}.\)             
B. \(\frac{{2{S_{xq}}}}{a}.\)                               
C. \(\frac{{{S_{xq}}}}{a}.\) 
D. \(\frac{{{S_{xq}}}}{{3a}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Tam giác \[ABC\] vuông tại \[A\].     
B. Tam giác \[ABC\] vuông tại \[B\].          
C. Tam giác \[ABC\] vuông tại \[C\].     
D. Không thể kết luận được.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP