Trong các điểm \(A,B,C,D\) được biểu diễn trên trục số sau, điểm biểu diễn số không phải số nguyên là

Trong các điểm \(A,B,C,D\) được biểu diễn trên trục số sau, điểm biểu diễn số không phải số nguyên là

A. Chỉ có điểm \(A\);
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 7 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Đoạn thẳng đơn vị từ 0 đến 1 được chia làm 3 đoạn thẳng bằng nhau. Do đó các số nguyên được biểu diễn cách số 0 bằng 3; hoặc 6; hoặc 9; … đoạn thẳng nhỏ.
Do đó, trên trục số có hai điểm biểu diễn số nguyên là điểm \(B\) và \(C\).
Vậy điểm biểu diễn số không phải số nguyên là điểm \(A\) và \(D\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ \(\frac{{a + b}}{{c + d}} = \frac{{b + c}}{{d + a}}\) suy ra \(\frac{{a + b}}{{b + c}} = \frac{{c + d}}{{d + a}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\[\frac{{a + b}}{{b + c}} = \frac{{c + d}}{{d + a}} = \frac{{a + b + c + d}}{{b + c + d + a}} = 1\]
Do đó \(a + b = b + c\) nên \(a = c\).
Lời giải
Gọi \(x,y,z\) lần lượt là số máy in của các phân xưởng thứ nhất, thứ hai, thứ ba.
Tổng số máy của ba phân xưởng là \(x + y + z = 57\).
Vì số ngày hoàn thành công việc tỉ lệ nghịch với số máy in nên ta có:
\(2x = 4y = 5z\) suy ra \(\frac{{2x}}{{20}} = \frac{{4y}}{{20}} = \frac{{5z}}{{20}}\) hay \(\frac{x}{{10}} = \frac{y}{5} = \frac{z}{4}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{10}} = \frac{y}{5} = \frac{z}{4} = \frac{{x + y + z}}{{10 + 5 + 4}} = \frac{{57}}{{19}} = 3\)
Suy ra \(x = 3.10 = 30\); \(y = 3.5 = 15\); \(z = 3.4 = 12\).
Vậy số máy in của ba phân xưởng lần lượt là \(30;15;12\) (máy in).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
(2,0 điểm) Cho hình vẽ biết \(xx' \bot tt'\), \[yy' \bot tt'\], \(\widehat {zCx'} = 110^\circ \), \(\widehat {CAO} = 50^\circ \), \(\widehat {OBy'} = 140^\circ \).

a) Vẽ lại hình (đúng số đo của các góc) và viết giả thiết, kết luận của bài toán.
b) Giải thích tại sao \(xx'\,{\rm{//}}\,yy'\).
c) Tìm số đo của \(\widehat {CDy}\).
d) Tìm số đo của \(\widehat {AOB}\).
(2,0 điểm) Cho hình vẽ biết \(xx' \bot tt'\), \[yy' \bot tt'\], \(\widehat {zCx'} = 110^\circ \), \(\widehat {CAO} = 50^\circ \), \(\widehat {OBy'} = 140^\circ \).

a) Vẽ lại hình (đúng số đo của các góc) và viết giả thiết, kết luận của bài toán.
b) Giải thích tại sao \(xx'\,{\rm{//}}\,yy'\).
c) Tìm số đo của \(\widehat {CDy}\).
d) Tìm số đo của \(\widehat {AOB}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
