Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 7 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Gọi \(x,y,z\) lần lượt là số máy in của các phân xưởng thứ nhất, thứ hai, thứ ba.
Tổng số máy của ba phân xưởng là \(x + y + z = 57\).
Vì số ngày hoàn thành công việc tỉ lệ nghịch với số máy in nên ta có:
\(2x = 4y = 5z\) suy ra \(\frac{{2x}}{{20}} = \frac{{4y}}{{20}} = \frac{{5z}}{{20}}\) hay \(\frac{x}{{10}} = \frac{y}{5} = \frac{z}{4}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{10}} = \frac{y}{5} = \frac{z}{4} = \frac{{x + y + z}}{{10 + 5 + 4}} = \frac{{57}}{{19}} = 3\)
Suy ra \(x = 3.10 = 30\); \(y = 3.5 = 15\); \(z = 3.4 = 12\).
Vậy số máy in của ba phân xưởng lần lượt là \(30;15;12\) (máy in).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Đại lượng \(y\) tỉ lệ nghịch với đại lượng \(x\) theo hệ số tỉ lệ là \(a\)\(\left( {a \ne 0} \right)\) nên \(xy = a\).
Khi \(x = 3\) thì \(y = 4\) ta có \(a = 3.4 = 12\).
Câu 2
Lời giải
Đáp án đúng là: A

Tia \(OC\) nằm trong góc \(AOB\) nên ta có:
\(\widehat {AOB} = \widehat {AOC} + \widehat {BOC}\) (hai góc kề nhau)
Suy ra \(\widehat {AOC} = \widehat {AOB} - \widehat {BOC} = 120^\circ - 30^\circ = 90^\circ \).
Do đó \(\widehat {AOC} > \widehat {BOC}\).
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.