(1,5 điểm) Cho hình vẽ bên, biết \[\widehat {aAx'} = 60^\circ \], \(\widehat {ABC} = 60^\circ \) và tia \(AC\) là tia phân giác của góc \(BAx'\).

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.
b) Giải thích tại sao \(xx'\,{\rm{//}}\,yy'\).
c) Tính số đo góc \(BAC\) và góc \(ACB\).
(1,5 điểm) Cho hình vẽ bên, biết \[\widehat {aAx'} = 60^\circ \], \(\widehat {ABC} = 60^\circ \) và tia \(AC\) là tia phân giác của góc \(BAx'\).

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.
b) Giải thích tại sao \(xx'\,{\rm{//}}\,yy'\).
c) Tính số đo góc \(BAC\) và góc \(ACB\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 7 Chân trời sáng tạo có đáp án !!
Quảng cáo
Trả lời:
a) Học sinh vẽ lại hình theo đúng số đo các góc.
|
GT |
\(a,\,\,xx',\,\,yy'\) là các đường thẳng; \(a\) cắt \(xx'\) tại \(A\), \[\widehat {aAx'} = 60^\circ \]; \(a\) cắt \(yy'\) tại \(B\), \[\widehat {ABC} = 60^\circ \]; tia \(AC\) là tia phân giác của \(\widehat {BAx'}\). |
|
KL |
b) Giải thích \(xx'\,{\rm{//}}\,yy'\). c) Tính \(\widehat {BAC}\), \(\widehat {ACB}\). |
b) Ta có \[\widehat {aAx'} = \widehat {ABC}\] (cùng bằng \[60^\circ \])
Mà hai góc này ở vị trí đồng vị nên \(xx'\,{\rm{//}}\,yy'\).
c) Ta có \[\widehat {aAx'} + \widehat {BAx'} = 180^\circ \] (hai góc kề bù)
\[\widehat {BAx'} = 180^\circ - \widehat {aAx'} = 180^\circ - 60^\circ = 120^\circ \]
Tia \(AC\) là tia phân giác của \(\widehat {BAx'}\) nên \(\widehat {BAC} = \widehat {CAx'} = \frac{1}{2}\widehat {BAx'} = 60^\circ \).
Do \(xx'\,{\rm{//}}\,yy'\) (chứng minh câu b) nên \(\widehat {ACB} = \widehat {CAx'} = 60^\circ \) (hai góc so le trong).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Quan sát biểu đồ ta thấy năm 2020 bóng đá nam Việt Nam có xếp hạng 94, là bậc cao nhất trên bảng xếp hạng FIFA.
Lời giải
Ta có \[\left| {x - 6} \right| = \left| {6 - x} \right|\].
Do đó \[A = \left| {x - 4} \right| + \left| {x - 6} \right| = \left| {x - 4} \right| + \left| {6 - x} \right| \ge \left| {x - 4 + 6 - x} \right|\]
Hay \[A \ge \left| 2 \right| = 2\]
Dấu “=” xảy ra khi và chỉ khi \(\left( {x - 4} \right)\left( {6 - x} \right) \ge 0\).
Điều này có nghĩa \(x - 4\) và \(6 - x\) có cùng dấu.
Trường hợp 1: \(\left\{ \begin{array}{l}x - 4 \ge 0\\6 - x \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 4\\x \le 6\end{array} \right. \Leftrightarrow 4 \le x \le 6\)
Trường hợp 2: \(\left\{ \begin{array}{l}x - 4 \le 0\\6 - x \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 4\\x \ge 6\end{array} \right.\left( {v\^o {\rm{ }}l\'i } \right)\)
Vậy biểu thức \(A\) đạt giá trị nhỏ nhất bằng \(2\) khi \(4 \le x \le 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{{ - 3}}{4}\) và \(\frac{{ - 3}}{2}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

