(0,5 điểm) Tìm \(x,\,\,y\) biết rằng \(\left| {x - \frac{1}{2}} \right| + \left| {x - y} \right| \le 0\).
Quảng cáo
Trả lời:
Ta có \(\left| {x - \frac{1}{2}} \right| \ge 0\), với mọi \(x\)
\(\left| {x - y} \right| \ge 0\), với mọi \(x,\,\,y\)
Do đó \(\left| {x - \frac{1}{2}} \right| + \left| {x - y} \right| \ge 0\), với mọi \(x,\,\,y\)
Mà theo bài, \(\left| {x - \frac{1}{2}} \right| + \left| {x - y} \right| \le 0\)
Suy ra \(\left| {x - \frac{1}{2}} \right| + \left| {x - y} \right| = 0\)
Điều này xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}\left| {x - \frac{1}{2}} \right| = 0\\\left| {x - y} \right| = 0\end{array} \right.\), suy ra \(\left\{ \begin{array}{l}x = \frac{1}{2}\\y = \frac{1}{2}\end{array} \right.\)
Vậy \(x = \frac{1}{2}\), \(y = \frac{1}{2}\) thì \(\left| {x - \frac{1}{2}} \right| + \left| {x - y} \right| \le 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Học sinh vẽ lại hình theo đúng số đo các góc.

|
GT |
\(\widehat {ACB} = 40^\circ \), \(\widehat {BAC} = 100^\circ \); tia \(Ay\) là tia phân giác của \[\widehat {CAx}\]. |
|
KL |
b) Tính \(\widehat {CAy}\). c) Giải thích \(Ay\,{\rm{//}}\,BC\), tính \(\widehat {ABC}\). |
b) Ta có \[\widehat {xAC} + \widehat {BAC} = 180^\circ \] (hai góc kề bù)
\[\widehat {xAC} = 180^\circ - \widehat {BAC} = 180^\circ - 100^\circ = 80^\circ \]
Tia \(Ay\) là tia phân giác của \[\widehat {CAx}\] nên \(\widehat {xAy} = \widehat {CAy} = \frac{1}{2}\widehat {xAC} = 40^\circ \).
b) Ta có \[\widehat {CAy} = \widehat {ACB}\] (cùng bằng \[40^\circ \])
Mà hai góc này ở vị trí so le trong nên \(Ay\,{\rm{//}}\,BC\).
Do \(Ay\,{\rm{//}}\,BC\) nên \(\widehat {ABC} = \widehat {xAy} = 40^\circ \) (hai góc đồng vị).
Câu 2
Lời giải
Đáp án đúng là: C
Ta có \(\frac{{ - 3}}{{15}} = \frac{{ - 1}}{5}\). Phân số \(\frac{{ - 1}}{5}\) và \(\frac{{ - 1}}{{20}}\) là các phân số tối giản với mẫu số dương có ước nguyên tố là 2 và 5 nên viết được dưới dạng số thập phân hữu hạn.
Số \(\sqrt 3 \) là căn bậc hai số học của số 3, số 3 không phải số chính phương nên \(\sqrt 3 \) là số vô tỉ.
Số \(\frac{4}{{ - 12}} = \frac{{ - 1}}{3}\) là phân số tối giản với mẫu số dương có ước nguyên tố khác là 2 và 5 nên viết được dưới dạng số thập phân vô hạn tuần hoàn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
PHẦN I. TRẮC NGHIỆM KHÁCH QUAN (2,0 điểm)
Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây:
Trong các số \(2,2;\,\,\,\frac{9}{0};\,\,\frac{0}{{16}};\, - 1\frac{2}{3}\), số nào không phải là số hữu tỉ?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
