Câu hỏi:

26/11/2025 6 Lưu

Cho \(\Delta ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\).

a) Viết các tỉ số lượng giác của góc \(B.\)

b) Cho \(AC = 16{\rm{\;cm}},\,\,BC = 20{\rm{\;cm}}.\) Giải tam giác \(ABC\) (làm tròn số đo góc đến phút).

c) Kẻ đường cao \(AH.\) Gọi \(M\) là hình chiếu của \(H\) lên \(AB,\) \(K\) là hình chiếu của \(H\) lên \(AC.\) Chứng minh rằng \(BM + CK = BC\left( {{{\cos }^3}B + {{\sin }^3}B} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét \(\Delta ABC\) vuông tại \(A,\) ta có:

\(\sin B = \frac{{AC}}{{BC}},\,\,\cos B = \frac{{AB}}{{BC}},\)

\(\tan B = \frac{{AC}}{{AB}},\,\,\cot B = \frac{{AB}}{{AC}}.\)

Cho \(\Delta ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\).  a) Viết các tỉ số lượng giác của góc \(B.\) (ảnh 1)

b) Xét \(\Delta ABC\) vuông tại \(A,\) theo định lí Pythagore, ta có:

\(B{C^2} = A{B^2} + A{C^2}\)

Suy ra \(A{B^2} = B{C^2} - A{C^2} = {20^2} - {16^2} = 144.\) Do đó \(AB = 12{\rm{\;cm}}.\)

Theo câu a, ta có: \(\cos B = \frac{{AB}}{{BC}} = \frac{{12}}{{20}} = \frac{3}{5}.\) Từ đó suy ra \(\widehat {B\,} \approx 53^\circ 8'.\)

Lại có: \(\widehat {B\,} + \widehat {C\,} = 90^\circ \), suy ra \(\widehat {C\,} = 90^\circ  - \widehat {B\,} \approx 90^\circ  - 53^\circ 8' \approx 36^\circ 52'.\)

Vậy \(AB = 12{\rm{\;cm}},\,\,\widehat {B\,} \approx 53^\circ 8',\,\,\widehat {C\,} \approx 36^\circ 52'.\)

c) Xét \(\Delta ABH\) vuông tại \(H,\) ta có: \(\cos B = \frac{{BH}}{{AB}}.\)

Xét \(\Delta MBH\) vuông tại \(M,\) ta có: \(\cos B = \frac{{BM}}{{BH}}.\)

Ta có: \({\cos ^3}B = \cos B \cdot \cos B \cdot \cos B = \frac{{AB}}{{BC}} \cdot \frac{{BH}}{{AB}} \cdot \frac{{BM}}{{BH}} = \frac{{BM}}{{BC}}.\)

Chứng minh tương tự, ta cũng có: \[{\cos ^3}C = \cos C \cdot \cos C \cdot \cos C = \frac{{AC}}{{BC}} \cdot \frac{{CH}}{{AC}} \cdot \frac{{CK}}{{CH}} = \frac{{CK}}{{BC}}.\]

Lại có \(\widehat {B\,} + \widehat {C\,} = 90^\circ \) nên \(\cos C = \sin B,\) suy ra \[{\sin ^3}B = \frac{{CK}}{{BC}}.\]

Do đó \({\cos ^3}B + {\sin ^3}B = \frac{{BM}}{{BC}} + \frac{{CK}}{{BC}} = \frac{{BM + CK}}{{BC}}.\)

Suy ra \(BM + CK = BC\left( {{{\cos }^3}B + {{\sin }^3}B} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ \(CH \bot AB,\,\,H \in AB.\) Khi đó \(CH\) là chiều cao của con dốc.

Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\) (ảnh 2)

⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CAH} = \frac{{CH}}{{AH}}\)

Suy ra \(AH = \frac{{CH}}{{{\rm{tan}}\widehat {CAH}}} = \frac{{CH}}{{{\rm{tan6}}^\circ }}\,\,({\rm{m}}).\) (1)

⦁ Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CBH} = \frac{{CH}}{{BH}}\)

Suy ra \(BH = \frac{{CH}}{{{\rm{tan}}\widehat {CBH}}} = \frac{{CH}}{{{\rm{tan4}}^\circ }}\,\,({\rm{m}}).\) (2)

⦁ Từ (1) và (2) ta có: \(AH + BH = \frac{{CH}}{{{\rm{tan6}}^\circ }} + \frac{{CH}}{{{\rm{tan4}}^\circ }}\) hay \(AB = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Do đó \(762 = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Suy ra \(CH = \frac{{762}}{{\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}}} \approx 32{\rm{\;(m)}}{\rm{.}}\)

⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CAH} = \frac{{CH}}{{AC}}\)

Suy ra \(AC = \frac{{CH}}{{{\rm{sin}}\widehat {CAH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin6}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin6}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (3)

Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CBH} = \frac{{CH}}{{CB}}\)

Suy ra \(CB = \frac{{CH}}{{{\rm{sin}}\widehat {CBH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin4}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin4}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (4)

⦁ Thời gian lên dốc \[AC\] là: \[{t_{AC}} = \frac{{{S_{AC}}}}{{{v_{ld}}}} = \frac{{AC}}{{{v_{ld}}}} \approx \frac{4}{{125{\rm{sin6}}^\circ }}:4 = \frac{1}{{125{\rm{sin6}}^\circ }}\] (giờ).

Thời gian xuống dốc \(CB\) là: \[{t_{CB}} = \frac{{{S_{CB}}}}{{{v_{xd}}}} = \frac{{CB}}{{{v_{xd}}}} \approx \frac{4}{{125{\rm{sin4}}^\circ }}:19 = \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }}\] (giờ).

Thời gian đi từ \(A\) đến \(B\) là:

\({t_{AB}} = {t_{AC}} + {t_{CB}} \approx \frac{1}{{125\sin 6^\circ }} + \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }} \approx 0,1007\) (giờ) ≈ 6 phút.

Vậy bạn An đến trường lúc 6 giờ + 6 phút = 6 giờ 6 phút.

Lời giải

a) \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)

 \(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)

 \(\frac{2}{3}x =  - 6\) hoặc \(2x = 8\)

    \(x =  - 9\) hoặc \(x = 4\)

Vậy phương trình đã cho có hai nghiệm là \(x =  - 9;\) \(x = 4\).

b) Điều kiện xác định: \(x \ne 2,\,\,x \ne  - 2.\)

\(\frac{{x + 2}}{{x - 2}} = \frac{{x - 2}}{{x + 2}} + \frac{{16}}{{{x^2} - 4}}\)

\(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)

\({\left( {x + 2} \right)^2} = {\left( {x - 2} \right)^2} + 16\)

\({x^2} + 4x + 4 = {x^2} - 4x + 4 + 16\)

 \(8x = 16\)

  \(x = 2\) (không thỏa mãn điều kiện)

Vậy phương trình đã cho vô nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP