Câu hỏi:

25/11/2025 6 Lưu

Đường cong trong hình dưới đây là đồ thị của một hàm số nào?

Đường cong trong hình dưới đây là đồ thị của một hàm số nào? (ảnh 1)

A. \[y = 1 + \sin x\].  
B. \[y = \sin x\].      
C. \[y = 1 - \sin x\].                      
D. \[y = \cos x\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Đồ thị hàm \[y = \cos x\].

Nhận xét: Thay toạ độ các điểm có toạ độ \(\left( { - \pi ; - 1} \right),\left( {0;1} \right),\left( {\pi ; - 1} \right)\) hàm số nào thoả mãn thì đó là hàm số cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 3                            
B. 2                          
C. 4                                
D. 1

Lời giải

Chọn A

Phương trình \(\sin 2x = m - 2\)  có nghiệm khi \( - 1 \le m - 2 \le 1 \Leftrightarrow 1 \le m \le 2,m\in \mathbb{Z} \Rightarrow m \in \left\{ {1;2;3} \right\}\).

Có 3 giá trị cần tìm.

Lời giải

Biến đổi \(y\,\, = \,1 - {\sin ^2}x + 2\sin x + 2 =  - {\sin ^2}x + 2\sin x + 3\).

Đặt \(t\, = \,\sin x\) với \(t \in \left[ { - 1;1} \right]\)Ta được hàm số \(y\,\, = \, - {t^2} + 2t + 3\).

Lập bảng biến thiên của hàm số \(y\,\, = \, - {t^2} + 2t + 3\) trên \(t \in \left[ { - 1;1} \right]\).

Kết luận \(Maxy = 4\) khi \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \).

\(Min\,y = 0\) khi \(\sin x =  - 1 \Leftrightarrow x =  - \frac{\pi }{2} + k2\pi \).

Câu 4

A. \(3\).                      
B. \( - 5\).                 
C. \( - 3\).                             
D. \(5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 45.                         
B. 47.                       
C. 46.                             
D. 48.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP