Câu hỏi:

25/11/2025 13 Lưu

Một cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 1\], công sai \[d = 4\]. Cần lấy tổng của bao nhiêu số hạng đầu tiên của cấp số đó để được tổng là \[561\]?

A. \[142\].                      
B. \[18\].                            
C. \[141\].                  
D. \[17\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có \({S_n} = {u_1} + {u_2} + {u_3} + .... + {u_n} = \frac{n}{2}\left( {{u_1} + {u_n}} \right)\)\( = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right).d} \right]\)

Thay vào ta có

\(561 = \frac{n}{2}\left[ {2 + 4.\left( {n - 1} \right)} \right]\)\( \Leftrightarrow 2{n^2} - n - 561 = 0\)

Giải ra ta được  \(n = 17\).

Vậy cần lấy ra \(17\) số hạng đầu tiên của cấp số đó để được tổng là \[561\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[l = 3,93{\rm{ }}cm.\]                       
B. \[l = 2,94{\rm{ }}cm.\]                       
C. \[l = 3,39{\rm{ }}cm.\].                                                  
D. \[l = 1,49{\rm{ }}cm.\]

Lời giải

Chọn A

Cung có số đo \[\frac{\pi }{{16}}\](radian) tương ứng số đo là \(n = \frac{{180}}{{16}} = \frac{{45}}{4} = 11,25^\circ \)

Độ dài l của cung tròn trên là: \(l = 2\pi .R.\frac{n}{{360}} = 2\pi .20.\frac{{11,25}}{{360}} = \pi .\frac{{11,25}}{9} \approx 3,93\) (cm).

Câu 2

A. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\].                                          
B. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\].                                          
C. \[D = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\].
D. \[D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\].

Lời giải

Chọn C

Hàm số \[y = \frac{{\sin x}}{{\cos x - 1}}\]xác định \( \Leftrightarrow \cos x - 1 \ne 0 \Leftrightarrow \cos x \ne 1\)

\( \Leftrightarrow x \ne k2\pi \)(với \(k \in Z\))

Vậy tập xác định của hàm số \[y = \frac{{\sin x}}{{\cos x - 1}}\]là \[D = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}.\]

Câu 3

A. \[\left[ { - 1;1} \right]\].                            
B. \[\left[ {0;2} \right]\].                   
C. \[\left[ { - 1;2} \right]\].      
D. \[\left[ {1;3} \right]\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[4\].                         
B. \[3\].                        
C. \[2\].                                      
D.\[1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[1;1;2;3;6\].                                                     
B. \[1;1;2;3;5\].                                                     
C. \[1;1;3;5;7\].                     
D. \[1;1;2;4;8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[x = - \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}\].                                           
B. \[x = \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}.\].                                            
C. \[x = \frac{\pi }{3} + k\pi ,k \in \mathbb{Z}\].
D. \[x = - \frac{\pi }{3} + k\pi ,k \in \mathbb{Z}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP