Câu hỏi:

25/11/2025 65 Lưu

Một cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 1\], công sai \[d = 4\]. Cần lấy tổng của bao nhiêu số hạng đầu tiên của cấp số đó để được tổng là \[561\]?

A. \[142\].                      
B. \[18\].                            
C. \[141\].                  
D. \[17\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có \({S_n} = {u_1} + {u_2} + {u_3} + .... + {u_n} = \frac{n}{2}\left( {{u_1} + {u_n}} \right)\)\( = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right).d} \right]\)

Thay vào ta có

\(561 = \frac{n}{2}\left[ {2 + 4.\left( {n - 1} \right)} \right]\)\( \Leftrightarrow 2{n^2} - n - 561 = 0\)

Giải ra ta được  \(n = 17\).

Vậy cần lấy ra \(17\) số hạng đầu tiên của cấp số đó để được tổng là \[561\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. \[T = 2\pi \].            
B. \[T = \frac{{2\pi }}{3}\].        
C. \[T = 6\pi \].     
D. \[T = 3\pi .\]

Lời giải

Chọn B

Hàm số \(y = \sin 3x\)tuần hoàn với chu kì \[T = \frac{{2\pi }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{u_{n - 1}} = {u_n} + d,\forall n \in {\mathbb{N}^*}\].                  
B. \[{u_n} = 2{u_1} + \left( {n - 1} \right)d,\forall n \in {\mathbb{N}^*}\]                                         
C. \[{u_n} = {u_{n - 1}} + d,\forall n \in {\mathbb{N}^*}\].           
D . \[{u_n} = n{u_1} + \frac{{n\left( {n - 1} \right)d}}{2}\](\(\forall n \in {N^*}\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\].                                          
B. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\].                                          
C. \[D = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\].
D. \[D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP