Câu hỏi:

25/11/2025 42 Lưu

Tìm giá trị của \[x\] để ba số \[x + 1;{\rm{ }}2x + 1;{\rm{ }}x + 7\] theo thứ tự đó lập thành một cấp số cộng.

A. \[x = 3\].                   
B. \[x = - 3\].                    
C. \[x = 5\].                
D. \[x = - 5\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Vì ba số \[x + 1;{\rm{ }}2x + 1;{\rm{ }}x + 7\] theo thứ tự đó lập thành một cấp số cộng nên ta có

\(2(2x + 1) = x + 1 + x + 7\) \( \Leftrightarrow 4x + 2 = 2x + 8\)\( \Leftrightarrow x = 3\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. \[T = 2\pi \].            
B. \[T = \frac{{2\pi }}{3}\].        
C. \[T = 6\pi \].     
D. \[T = 3\pi .\]

Lời giải

Chọn B

Hàm số \(y = \sin 3x\)tuần hoàn với chu kì \[T = \frac{{2\pi }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{u_{n - 1}} = {u_n} + d,\forall n \in {\mathbb{N}^*}\].                  
B. \[{u_n} = 2{u_1} + \left( {n - 1} \right)d,\forall n \in {\mathbb{N}^*}\]                                         
C. \[{u_n} = {u_{n - 1}} + d,\forall n \in {\mathbb{N}^*}\].           
D . \[{u_n} = n{u_1} + \frac{{n\left( {n - 1} \right)d}}{2}\](\(\forall n \in {N^*}\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\].                                          
B. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\].                                          
C. \[D = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\].
D. \[D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP