Quảng cáo
Trả lời:
\(\sin x - \sin 2x + \sin 3x = 0 \Leftrightarrow \left( {\sin x + \sin 3x} \right) - \sin 2x = 0\)
\( \Leftrightarrow 2\sin 2x\cos x - \sin 2x = 0\)\( \Leftrightarrow \)\(\sin 2x\left( {2\cos x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos x = \frac{1}{2}\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = \pm \frac{\pi }{3} + k\pi \end{array} \right.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a. Gọi J là giao điểm của MN với BC
Ta có \[\frac{{IN}}{{IC}} = \frac{{BJ}}{{BC}} = \frac{{AM}}{{AD}} = \frac{1}{3}\],\[\frac{{IG}}{{IS}} = \frac{1}{3}\]
\[ \Rightarrow \frac{{IN}}{{IC}} = \frac{{IG}}{{IS}} \Rightarrow NG\parallel SC\]
mà \[SC \subset \left( {SCD} \right)\]
\[ \Rightarrow NG\parallel \left( {SCD} \right)\].
b. Gọi \[E\] là giao điểm của \[IM\] và \[CD\]
Ta có \[\frac{{IM}}{{IE}} = \frac{{AM}}{{AD}} = \frac{1}{3} \Rightarrow \frac{{IM}}{{IE}} = \frac{{IG}}{{IS}}\]
\[ \Rightarrow MG\parallel SE\], \[SE \subset \left( {SCD} \right) \Rightarrow GM\parallel \left( {SCD} \right)\].
Câu 2
Lời giải
Chọn C
M, N lần lượt là trung điểm của SA và SB nên MN là đường trung bình của tam giác SAB
\( \Rightarrow MN//AB\) mà \(AB//CD \Rightarrow MN//CD \Rightarrow MN//(SCD)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
